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1 Problem Statement
The rotary servo base unit offered by Quanser is a fundamental component to subsequent
rotary systems used in this lab. The motor is controlled by a DAC and power amplifier
to provide the voltage range (-10V, 10V). There are two sensors on the motor module: a
tachometer measures angular velocity and an encoder measures absolute angular position.
The resolution of the encoder is 4096 pulses per revolution which provides a discernible
difference in position of 0.088◦. The tachometer is filtered through the power amplifier and
is measured to a 1:1 ratio of voltage to angular velocity in radians per second. Both sensor
signals are connected to an ADC and are imported into Matlab/Simulink using the Quarc
software offered by Quanser. Figure 1 references the typical setup of the system.

In this notebook we experimentally identify the model of the system for both position and
velocity. The methods used to identify parameters are time- and frequency-based system
identification. The notebook ultimately concludes by comparing and validating the time
constants and DC gain of the system.

Figure 1: Connecting the SRV02 to a single channel amplifier and two channel DAQ (Image
courtesy of the SRV02 User Manual). For the purposes of the lab, the tachometer output is
connected directly to the S1&S2 port of the amplifier.
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2 Theory

2.1 Theoretical Model

Amotor can be modeled as a coiled wire that produces a back voltage from an inertia-resisting
motion. In terms of electrical components, this includes a resistance and inductance, modeled
by an RL circuit. The mechanical components include an inertia (J) and damping (µ).
General relations are found in Eqs. (1) and (2). The coupling that occurs between the
components is defined using coefficients km and kτ . The back voltage is defined in Eq. (4)
and the torque-current relation is defined by Eq. (3).

Jθ̈ = τ − µθ̇ (1)

Vin = Ri+ L
di

dt
+ Vm (2)

τ = kτ i (3)

Vm = kmθ̇ (4)

2.1.1 Transfer Function

Using the Laplace transform of the aforementioned equations, the voltage-position relationship
of the system can be distilled to a first-order transfer function, shown in Eq. (7). As seen
in the simplification, the inductance of the motor is assumed negligible. From Eq. (7),
the damping coefficient (µ) is lumped into the rest of the time constant (τ) during system
identification. In conclusion, the two transfer functions used to model the system are Eqs.
(6) and (7) with τ representing the time constant and K being the DC gain.

Ω

Vin
=

kτ
RJ

s+ kτkm+Rµ
RJ

(5)

Ω

Vin
= K

1

τs+ 1
(6)

Θ

Vin
= K

1

s(τs+ 1)
(7)

2.1.2 State Space

Another method of system representation is through state space. The state variables x
are defined as angular position, velocity, and current. The following expressions utilize the
differential equations describing the motor for representing the position-voltage relation in
state space.

x1 = θ (8)

x2 = θ̇ (9)

The resultant system of equations matches the representation by the transfer function
for voltage to position of the system.

ẋ1 = x2 (10)
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ẋ2 = −(
kτkm +Rµ

RJ
)x2 + (

Kτ

RJ
)Vin (11)

2.2 System Identification Methods

2.2.1 Time Domain

A step response is a time domain method for system identification, specifically for low order
systems. Two parameters can be obtained from the step response: the rise time (tr) and
the steady state value (yss). Rise time can be related to the time constant of the system,
and the steady state value is equivalent to the DC gain for a unit step input. The relation
between rise time and time constant is approximately tr = 2.2τ .

2.2.2 Frequency Domain

An alternative method better suited for higher order systems is using the frequency domain.
Assuming the system is a linear time invariant (LTI) system, the frequency of an input
signal is equivalent to the frequency of the output from the system. Additionally, by using
the superposition principle associated with linear systems, these frequencies can be analyzed
individually and summed together. In essence, this method can be utilized by creating a
multi-sine input signal and determining the output frequencies and magnitudes.

Two parameters determine the resolution and maximum frequency that can be identified
from an experiment: the sampling period (dt) and experiment time (T ). Sampling period
determines the Nyquist frequency, or the maximum frequency content that can be identified
from a signal. This limitation is due to aliasing; the signal frequency can only be reconstructed
if the rate of sampling is twice the maximum frequency of the signal. If one samples less than
the Nyquist frequency, the signal appears to have lower frequency content. On the opposite
end, the experiment time T determines the frequency resolution that can be resolved during
reconstruction.

If the experiment is conducted correctly according to sampling and experiment time,
the data collected can be converted to the frequency domain via a Fourier transform. The
transfer function of the system can then be determined by taking the ratio of magnitudes for
the input and output signals. The system must reach steady state for this method to work,
otherwise the ratio will contain excessive noise due to the transient response of the system.
This is accomplished by only recording data for the last half of an experiment. To keep the
same T , the overall length of the multi-sine input must be doubled. After post-processing
the ratio of magnitudes, the resultant plot is the Bode magnitude of the system.

2.2.3 Validation

To validate both proposed methods of system identification, we use a sample first-order
system described by Eq. 12.

G(s) =
1

0.15s+ 1
(12)

The transfer function has a theoretical rise time of 2.2τ , or 0.33 s. One way of predicting
rise time is to extrapolate the initial slope of the response until it crosses the steady state
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Figure 2: The example first order system with fitted parameters K = 1, τ = 0.15 that
match the known model parameters.

value. In the case of this system, the DC gain is one with a sampling period (dt) of
0.002s. A more accurate method to obtain the same information about the system is to
fit the experimental response to the time based response shown in Eq. (13). The equation
is obtained by taking the inverse Laplace transform of the transfer function in Eq. (6).
Using this as a model, the experimental data can be fit to the function by minimizing the
error of the non-linear regression. The fitting coefficients of the response are obtained using
Matlab’s built-in nlinfit function; the coefficients represent the values for DC gain and the
time constant. Using the sample system from Eq. (12), the time-based system identification
approach is shown in Figure 2.

g(t) = 1 − e−t/τ (13)

To validate the frequency-based method of identification, the same model from Eq. (12)
is used. The input multi-sine is a summation of 150 sine waves, where the frequency of
each wave is a multiple of the resolution determined by the experiment time (defined to
be five seconds). Superimposing the harmonic frequencies of the sine waves can result in
in the voltage saturation and the inability to identify unique sine curves. This offset is
accounted for by introducing a unique phase angle for each wave. The sum of waves can be
mathematically defined by

u =
150∑
i=0

sin(
2πi

T
t+ φi), (14)

where φi is either numerically random in the range of 2π or a chirp. A chirp is defined as

φi =
2πi

N
, (15)
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Figure 3: The input multi-sine and the corresponding response of the system are visualized
here in the time domain. The input signal avoids saturation and the output is bounded.

where N equals the number of superimposed waves. The time representation of the input
and output signals from the theoretical system are shown in Figure 3.

The Fourier transform of the input and output signals are visualized in Figure 4 where
the stems are located at multiples of 2π/T with a Nyquist frequency of π/dt. The Bode plot
of the system is then found by taking the ratio of output to input magnitudes and plotting
as a function of frequency. The resultant magnitude Bode plot is shown in Figure 5. From
the Bode plot, the parameters of τ and K can be identified. The DC gain is taken from the
Bode plot by the magnitude at zero frequency. In implementation, this is done by averaging
the flat section shown before the cutoff frequency in the Bode plot. The cutoff frequency is
defined as half power or −3dB from the DC gain. In this example, the cutoff is found by
determining the intersection of the plot with −3dB due to the DC gain being one or 0dB.
The fit is shown in Figure 5 and matches the parameters of the known model.

3 Implementation
The time and frequency method validated in the previous section is used on the physical
system to identify a first-order model for the voltage-velocity relationship and a second-order
model for voltage-position relationship. Time-based identification is used to obtain a preliminary
fit and act as a comparison for the frequency based method. The setup will be in open loop
for the determining the voltage-velocity relationship.

6



Figure 4: The Fourier transform of the input and output signals collocated at multiples of
the frequency resolution 2π/T for the example system.

Figure 5: The Bode plot follows the discrete representation of the known model. From
the figure, an estimate is made to identify the DC gain of the system by looking at the
magnitude at w = 0. Note: The cutoff frequency of this example is 6.67 rad

s
.
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3.1 Velocity Step Response

For the open loop experiment to identify the transfer function parameters, the experiment
time is two seconds because the system pole is fast and reaches a steady-state quickly. The
input signal is a one volt step occurring at a time of one second. By delaying the step, a
voltage offset observed during the first second can be subtracted from the measurements
taken during the step response. The offset is likely due to sensor noise or a bias. After
processing the signal, a response is observed to begin at zero volts. Using the model of a
first-order response shown in Eq. (13), the experimental data produced fitting coefficients of
τ = 0.025s, and a DC gain of K = 1.344. The system response and the fitted model are
shown in Figure 6.

Figure 6: The step response of the motor’s tachometer output using a one volt input step.

3.2 Velocity Bode Plot

The experiment length for the frequency-based identification is chosen to be five seconds,
requiring an overall input of 10 seconds to avoid a transient response. The multi-sine is
predetermined before passing the signal to the motor to avoid saturating the amplifier. The
resultant signal spans the majority of the voltage range to obtain better resolution when
converting the output signal from analog to digital. The experimental Bode plot of the system
is overlaid with the Bode plot of the transfer function estimated by the frequency method
and shown in Figure 7. The parameters obtained through the frequency-based identification
in open loop for the voltage-velocity relationship are a time constant τ = 0.021s and DC
gain of K = 1.420.

3.3 Angular Position Bode Plot

As shown in Eq. (7), there is an integrator for the theoretical voltage-position transfer
function. To better obtain an identifiable bode plot for position, the system is put in closed
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Figure 7: The experimental bode plot of the voltage-velocity relationship obtained from
150 superimposed sine waves.

loop and plotted against a theoretical model based on the parameters gained from the open
loop configuration for velocity. If agreeable, the motor can be modelled using the time
constant τ and DC gain K. The general form of the closed loop transfer function is shown
in Figure (8).

G(s)
R(s) Θ(s)

−

Figure 8: Unity Closed-Loop Feedback System. For analysis of reference and output, the
controller (C(s)) both the disturbance (d) and noise (n) were neglected to obtain the transfer
function. R(s) represents the input voltage, G(s) is the motor transfer function, and Θ(s)
is the output angular position represented by voltage.

For a model of the voltage-position relationship, the closed loop transfer function can be
represented by

T (s) =
K

s(τs+ 1) +K
(16)

where the parameters τ and K from the open loop configuration are also represented in
closed loop. The bode plot of the closed loop system is shown in Figure 9 using the values of
τ and K obtained from the system identification of the voltage-velocity relationship to plot
the closed loop theoretical model.
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Figure 9: The closed loop bode plot describing the voltage-position relationship of the
motor. The bode plot of the theoretical closed loop transfer function is provided based on
the estimates of τ and K from the voltage-velocity model.

4 Conclusion
In this notebook, the theoretical model of the system was derived based on electro-mechanical
equations of motion. It was deemed feasible to model the motor as a first-order system to
relate input voltage to output velocity and lump parameters together to describe the time
constant τ and DC gain K. The angular position relation of the motor with respect to input
voltage is the integral of velocity, represented by a pure integrator in the transfer function.
To guarantee stability and Bode plot readability, the position relationship was observed in
closed loop. The preceding methods of identification produced an estimated time constant
of τ = 0.021 and DC term of K = 1.420. The variability between experiments deviate by
20.10 % for τ and 5.56 % for the K. The resultant transfer function we identified for the
SRV02 motor from Quanser is described in Eq. (17).

G(s) =
1.420

s(0.021s+ 1)
(17)
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5 Appendix II: MATLAB Code

1 %% I n i t i a l i z e
2 c l o s e a l l ; c l e a r a l l ; c l c ;
3

4 %% Load data
5

6 sim_idx = 4 ;
7 sim_names = { ’Code Va l idat i on ’ , ’ System I d e n t i f i c a t i o n Omega ’ , . . .
8 ’ System I d e n t i f i c a t i o n Theta Open Loop ’ , . . .
9 ’ System I d e n t i f i c a t i o n Theta Closed Loop ’ } ;

10 f i l ename = convertCharsToStr ings ( sim_names{sim_idx }) ;
11

12 i s_unity = true ;
13 contro l l er_mat = ’ c o n t r o l l e r . mat ’ ;
14

15 % Def ine common parameters
16 dt = 0 . 0 0 2 ; % Sampling time
17 N = 150 ; % Number o f s i n e waves
18 f on t_s i z e = 18 ;
19

20

21 % Def ine unique parameters
22 switch f i l ename
23 case ’Code Va l idat i on ’
24 K = 1 ; % Fake step data
25 tau = 0 . 1 5 ;
26 T = 2 ;
27 A = 1 ;
28 i s_c l o s ed = f a l s e ;
29 load fakeStepData .mat
30 case ’ System I d e n t i f i c a t i o n Omega ’
31 K = 1 .4204 ; % F i r s t round o f ID
32 tau = 0.02090368438074 ;
33 T = 5 ;
34 A = 30 / N; % Sine wave amplitude
35 den = [ tau 1 ] ;
36 i s_c l o s ed = f a l s e ;
37 load freqdata_T5_N150_A30 .mat % For sytemID_time ( theta , v_in , v e l o c i t y )
38 case ’ System I d e n t i f i c a t i o n Theta Open Loop ’
39 K = 1 .4204 ; % F i r s t round o f ID
40 tau = 0.02090368438074 ;
41 T = 5 ;
42 A = 30 / N; % Sine wave amplitude
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43 den = [ tau 1 0 ] ;
44 load freqdata_T5_N150_A30 .mat % For pos tProces s .m
45 case ’ System I d e n t i f i c a t i o n Theta Closed Loop ’
46 K = 1 .4204 ; % F i r s t round o f ID
47 tau = 0.02090368438074 ;
48 T = 5 ;
49 A = 30 / N; % Sine wave amplitude
50 den = [ tau 1 0 ] ;
51 i f i s_unity
52 C = 1 ;
53 e l s e
54 load ( contro l l er_mat ) ;
55 end
56 load freqdata_closed_T5_N150_A30 .mat % For postProces s .m
57 end
58

59 % Parameter c a l u l a t i o n s
60 i = ( 1 :N) ’ ; % Sequence array
61 w = 2∗ pi /T∗ i ; % Frequency
62 % phi = 2∗ pi /N∗ i ; % Chirp
63 phi = 2∗ pi ∗ rand (1 ,N) ’ ; % Random Noise
64 num = K;
65

66 % Frequenc ie s o f f f t
67 w_max = max(w) ;
68 w_nyq = pi / dt ;
69 w_res = 2 ∗ pi / T;
70 w_plot = ( 0 : w_res :2∗w_nyq) ’ ;
71

72 % Check input
73 dt = 0 . 0 0 2 ;
74 t = ( 0 : dt :T) ’ ;
75

76 % Create input mu l t i s i n e
77 u = A ∗ s i n (w ∗ t ’ + phi ) ;
78 u = sum(u) ’ ;
79

80 % Ver i fy bounded between (−10 ,10) otherwi s e re−i t e r a t e
81 whi le any (u <= −10 & u >= 10)
82

83 phi = 2 ∗ pi ∗ rand (1 ,N) ’ ; % Random Noise
84 u = A ∗ s i n (w .∗ t ’ + phi ) ; % Generates a l l s i n e waves
85 u = sum(u) ’ ; % Sum of s i n e waves
86

87 end
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1 %% I n i t i a l i z a t i o n
2

3 c l o s e a l l
4

5 run i n i t i a l i z e .m
6 t_save = t ;
7 o f f s e t = 0 . 0220 ; % Rest ing vo l tage
8

9 %% Fi t t i n g Omega
10

11 i f strcmp ( sim_names{sim_idx } , ’ System I d e n t i f i c a t i o n Omega ’ )
12

13 w_max2 = 20 ;
14

15 idx = f l o o r ( l ength ( v e l o c i t y ) / 2) + 1 ;
16 y = v e l o c i t y ( idx : end ) − o f f s e t ;
17 u = v_in ( idx : end ) ;
18 t = t_save ( 1 : l ength (y ) ) ;
19 w_plot = w_plot ( 1 : l ength (y ) ) ;
20 plot_idxs = [ 4 ] ;
21

22 Y = ( f f t ( y ) ) / l ength (y ) ∗ 2 ; % Frequenc ie s o f output s i g n a l
23 U = ( f f t (u) ) / l ength (u) ∗ 2 ;
24

25 G_mag_exp = Y ./ U;
26 G_mag_exp(1) = G_mag_exp(2) ;
27 K2 = mean( abs (G_mag_exp(w_plot < w_max2) ) ) ;
28

29

30 % f = @( beta , t ) beta (1 ) ∗ (1 − exp(−t / beta (2 ) ) ) ;
31 % beta0 = [ 1 ; 1 ] ;
32 %
33 % beta = n l i n f i t ( t , y , f , beta0 ) ;
34 % K = beta (1 ) ;
35 % tau = beta (2 ) ;
36

37 f p r i n t f ( ’The f i t t e d parameters are K = %.4 f and tau = %.4 f . \ n ’ , K, tau ) ;
38

39 G_ol_th = t f (K, [ tau 1 ] ) ;
40 [G_ol_mag_th , ~ ] = bode (G_ol_th , w_plot ) ;
41 G_ol_mag_th = squeeze (G_ol_mag_th) ;
42

43 % f i g u r e 3 = f i g u r e ;
44 % axes1 = axes ( ’ Parent ’ , f i g u r e 3 ) ;
45 % hold ( axes1 , ’ on ’ ) ;
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46 % plot2 = p lo t ( t , y ) ;
47 % plot1 = p lo t ( t , f ( beta , t ) ) ;
48 % se t ( plot1 , ’ DisplayName ’ , ’ Theore t i ca l ’ , ’ LineWidth ’ , 2 ) ;
49 % se t ( plot2 , ’ DisplayName ’ , ’ Experimental ’ , ’ LineWidth ’ , 2 ) ;
50 % y lab e l ( ’ Amplitude ’ , ’ HorizontalAl ignment ’ , ’ center ’ ) ;
51 % x lab e l ( ’Time ( s ) ’ ) ;
52 % box ( axes1 , ’ on ’ ) ;
53 % se t ( axes1 , ’ FontName ’ , ’ Times New Roman’ , ’ FontSize ’ , font_s ize , . . .
54 % ’XMinorTick ’ , ’ on ’ ) ;
55 % legend1 = legend ( axes1 , ’ show ’ ) ;
56 % se t ( legend1 , ’ FontSize ’ , font_s ize , ’ Location ’ , ’ best ’ ) ;
57

58 pr in t ( gcf , f i l ename+’_theo_vs_exp . png ’ , ’−dpng ’ , ’−r300 ’ ) ;
59

60 f i g u r e ;
61 semi logx (w_plot , db (G_ol_mag_th) )
62 hold on ;
63 semi logx (w_plot , db ( abs (G_mag_exp) ) )
64

65 % sim_names{sim_idx} = ’ System I d e n t i f i c a t i o n Theta Open Loop ’ ;
66

67 end
68

69 %% Post Proce s s ing Sc r i p t
70

71 switch sim_names{sim_idx}
72 case ’Code Va l idat i on ’
73 y = ls im ( t f (num, den ) , u , t ) ;
74 plot_idxs = [ 1 , 2 , 3 ] ;
75 i s_c l o s ed = f a l s e ;
76 case ’ System I d e n t i f i c a t i o n Theta Open Loop ’
77 t = ( 0 : dt :T−dt ) ’ ;
78 idx = length ( v_in ) − l ength ( t ) + 1 ;
79 u = v_in ( idx : end ) ;
80 y = theta ( idx : end ) ;
81 G_ol = t f (num, den ) ;
82 plot_idxs = [ 2 , 4 ] ;
83 i s_c l o s ed = f a l s e ;
84 case ’ System I d e n t i f i c a t i o n Theta Closed Loop ’
85 t = ( 0 : dt :T−dt ) ’ ;
86 idx = length ( v_in ) − l ength ( t ) + 1 ;
87 u = v_in ( idx : end ) ;
88 y = theta ( idx : end ) ;
89 G_ol = t f (num, den ) ;
90 G_cl = C ∗ G_ol / (1 + C ∗ G_ol) ;
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91 plot_idxs = [ 2 , 4 ] ;
92 i s_c l o s ed = true ;
93 end
94

95 % Four ie r Transform
96 U = f f t (u) ; % Frequenc ie s o f input s i g n a l
97 Y = f f t ( y ) ; % Frequenc ie s o f output s i g n a l
98

99 % w_plot = w_plot (w_plot <= w_max) ;
100 % U = U(1 : l ength (w_plot ) ) ;
101 % Y = Y(1 : l ength (w_plot ) ) ;
102

103 % Obtain d i s c r e t e bode p l o t o f t r a n s f e r func t i on
104 G_ol = c2d (G_ol , dt , ’ zoh ’ ) ;
105 [G_ol_mag_th , ~] = bode (G_ol , w_plot ) ;
106 G_ol_mag_th = squeeze (G_ol_mag_th) ;
107

108 i f i s_c l o s ed
109 G_cl = c2d (G_cl , dt , ’ zoh ’ ) ;
110 [G_cl_mag_th , ~] = bode (G_cl , w_plot ) ;
111 G_cl_mag_th = squeeze (G_cl_mag_th) ;
112 end
113

114 % Calcu la te exper imenta l t r a n s f e r func t i on
115 G_mag_exp = Y./U; % Output/ Input
116 G_mag_exp( abs (U) < 1e−3) = 0 ; % Remove no i s e in input s i g n a l
117 G_mag_exp(1) = 0 ; % Remove non−e x i s t e n t DC s i g n a l
118

119 %% Plot s
120

121 f o r plot_idx = plot_idxs
122 switch plot_idx
123

124 case 1 % Experimental Time Domain Plot ( input vs . output )
125

126 f i g u r e 1 = f i g u r e ;
127 axes1 = axes ( ’ Parent ’ , f i g u r e 1 ) ;
128 hold ( axes1 , ’ on ’ ) ;
129 p lo t1 = p lo t ( t , u ) ;
130 p lo t2 = p lo t ( t , y ) ;
131 s e t ( plot1 , ’ DisplayName ’ , ’ Input ’ , ’ LineWidth ’ , 2 ) ;
132 s e t ( plot2 , ’ DisplayName ’ , ’Output ’ , ’ LineWidth ’ , 2 ) ;
133 y l ab e l ( ’ Amplitude ’ , ’ Hor izontalAl ignment ’ , ’ c en t e r ’ ) ;
134 x l ab e l ( ’Time ( s ) ’ ) ;
135 box ( axes1 , ’ on ’ ) ;
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136 s e t ( axes1 , ’FontName ’ , ’ Times New Roman ’ , ’ FontSize ’ , font_s ize , . . .
137 ’ XMinorTick ’ , ’ on ’ ) ;
138 l egend1 = legend ( axes1 , ’ show ’ ) ;
139 s e t ( legend1 , ’ FontSize ’ , font_s ize , ’ Locat ion ’ , ’ bes t ’ ) ;
140 ax i s t i g h t
141 pr in t ( gcf , f i l ename+’_time . png ’ , ’−dpng ’ , ’−r300 ’ ) ;
142

143 case 2 % Bode Plot Comparison
144

145 i dxs = w_plot < w_max;
146

147 % Overlay t h e o r e t i c a l and exper imenta l
148 f i g u r e 2 = f i g u r e ;
149 axes1 = axes ( ’ Parent ’ , f i g u r e 2 ) ;
150 hold ( axes1 , ’ on ’ ) ;
151 i f i s_c l o s ed
152 semi logx1 = semi logx (w_plot ( idxs ) , [ db ( abs (G_cl_mag_th( idxs ) ) ) , . . .
153 db( abs (G_mag_exp( idxs ) ) ) ] ) ;
154 e l s e
155 semi logx1 = semi logx (w_plot ( idxs ) , [ db ( abs (G_ol_mag_th( idxs ) ) ) , . . .
156 db( abs (G_mag_exp( idxs ) ) ) ] ) ;
157 end
158 s e t ( semi logx1 (1 ) , ’ DisplayName ’ , ’ Theo r e t i c a l ’ , ’ LineWidth ’ , 2 ) ;
159 s e t ( semi logx1 (2 ) , ’ DisplayName ’ , ’ Experimental ’ , ’Marker ’ , ’ o ’ , . . .
160 ’ L ineSty l e ’ , ’ none ’ ) ;
161 y l ab e l ( ’Magnitude (dB) ’ , ’ Hor izontalAl ignment ’ , ’ c en t e r ’ ) ;
162 x l ab e l ( ’ Frequency ( rad/ s ) ’ ) ;
163 xlim ( axes1 , [ 3 500 ] ) ;
164 box ( axes1 , ’ on ’ ) ;
165 ax i s t i g h t
166 s e t ( axes1 , ’FontName ’ , ’ Times New Roman ’ , ’ FontSize ’ , font_s ize , ’ XMinorTick ’ , ’ on ’ , . . .
167 ’ XScale ’ , ’ l og ’ ) ;
168 l egend2 = legend ( axes1 , ’ show ’ ) ;
169 s e t ( legend2 , ’ FontSize ’ , font_s ize , ’ Locat ion ’ , ’ bes t ’ ) ;
170

171 pr in t ( gcf , f i l ename+’ _freq . png ’ , ’−dpng ’ , ’−r300 ’ ) ;
172

173 case 3 % Four i e r trans form p lo t
174

175 f i g u r e ( ’Name ’ , ’ Four i e r Transorms ’ ) ;
176 subplot ( 2 , 1 , 1 )
177 stem (w_plot , abs (U) ) ; % Create subplot o f f f t Y
178 xlim ( [ 0 w_plot ( end ) ] ) ;
179 y l ab e l ( ’ Input ’ )
180 subplot ( 2 , 1 , 2 )
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181 stem (w_plot , abs (Y) ) ; % Create subplot o f f f t U
182 xlim ( [ 0 w_plot ( end ) ] ) ;
183 x l ab e l ( ’ Frequency ( rad/ s ) ’ ) ;
184 y l ab e l ( ’ Input ’ )
185

186 case 4 % Theo r e t i c a l vs . Experimental Time Domain Plot ( s tep )
187

188 i f i s_c l o s ed
189 y_th = ls im (G_cl , u , t ) ;
190 e l s e
191 y_th = ls im (G_ol , u , t ) ;
192 end
193

194 f i g u r e 3 = f i g u r e ;
195 axes1 = axes ( ’ Parent ’ , f i g u r e 3 ) ;
196 hold ( axes1 , ’ on ’ ) ;
197 p lo t2 = p lo t ( t , y ) ;
198 p lo t1 = p lo t ( t , y_th) ;
199 s e t ( plot1 , ’ DisplayName ’ , ’ Theo r e t i c a l ’ , ’ LineWidth ’ , 2 ) ;
200 s e t ( plot2 , ’ DisplayName ’ , ’ Experimental ’ , ’ LineWidth ’ , 2 ) ;
201 y l ab e l ( ’ Amplitude ’ , ’ Hor izontalAl ignment ’ , ’ c en t e r ’ ) ;
202 x l ab e l ( ’Time ( s ) ’ ) ;
203 box ( axes1 , ’ on ’ ) ;
204 ax i s t i g h t
205 s e t ( axes1 , ’FontName ’ , ’ Times New Roman ’ , ’ FontSize ’ , font_s ize , . . .
206 ’ XMinorTick ’ , ’ on ’ ) ;
207 l egend1 = legend ( axes1 , ’ show ’ ) ;
208 s e t ( legend1 , ’ FontSize ’ , font_s ize , ’ Locat ion ’ , ’ bes t ’ ) ;
209

210 pr in t ( gcf , f i l ename+’_theo_vs_exp . png ’ , ’−dpng ’ , ’−r300 ’ ) ;
211

212 end
213 end
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