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1 Problem Statement
The rotary servo base unit offered by Quanser is a fundamental component to subsequent
rotary systems used in this lab. The motor is controlled by a DAC and power amplifier
to provide the voltage range (-10V, 10V). There are two sensors on the motor module: a
tachometer measures angular velocity and an encoder measures absolute angular position.
The resolution of the encoder is 4096 pulses per revolution which provides a discernible
difference in position of 0.088◦. The tachometer is filtered through the power amplifier and
is measured to a 1:1 ratio of voltage to angular velocity in radians per second. Both sensor
signals are connected to an ADC and are imported into MATLAB/Simulink using the Quarc
software offered by Quanser. Figure 1 references the typical setup of the system.

Figure 1: Connecting the SRV02 to a single channel amplifier and two channel DAQ (Image
courtesy of the SRV02 User Manual). For the purposes of the lab, the tachometer output is
connected directly to the S1&S2 port of the amplifier.

In this notebook, the objective is to identify a pendulum system experimentally and its
inherent disturbance as well as to observe the effects of different compensation techniques
to achieve minimal steady-state error, rise time, and overshoot. The methods to identify
parameters are time- and frequency-based system identification. The notebook ultimately
concludes by comparing the various controller designs used to achieve optimal response
parameters.
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2 Theory

2.1 Theoretical Model

Amotor can be modeled as a coiled wire that produces a back voltage from an inertia-resisting
motion. In terms of electrical components, this includes a resistance and inductance, modeled
by an RL circuit. The mechanical parameters of a pendulum setup include a moment of
inertia (J), total pendulum mass (m), centroid length (L), and damping (µ). General
relations are found in Eqs. (1) & (2). The coupling that occurs between the components
is defined using coefficients km and kτ . The back voltage is defined in Eq. (4) and the
torque-current relation is defined by Eq. (3).

Figure 2: The pendulum setup observed in this lab notebook. The effects of gravity
introduce a disturbance to the system that is not present in the previous lab notebook.

Jθ̈ = τ − µθ̇ − 1

2
mglsinθ (1)

vin = Ri+ L
di

dt
+ vm (2)

τ = kτ i (3)

vm = kmθ̇ (4)

When combining Eqs. (1) – (4) and assuming negligible motor inductance, the resultant
equation is a non-linear differential equation, as shown in Eq. (5).

θ̈ +
µR + kτkm

JR
θ̇ +

1

2

mgl

J
sinθ =

kτ
JR

vin (5)

For simplicity, the respective coefficients of θ̇, θ, and vin are lumped and labeled as b, a,
and c; Eq. (6) is used for any proceeding theoretical equation developments within this lab
report.
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θ̈ + bθ̇ + asinθ = cvin (6)

Since a nonlinear system cannot be used to generate a transfer function, a Taylor series
linear approximation is used to determine initial parameters of the pendulum system, as
shown in Eq. (7). In this formula, x̄ is the point about which the linear approximation is
estimated. To ensure linearity, only the first two terms of the Taylor series are used, as
shown in Eq. (8).

f(x) ≈ f(x̄) +∇f(x̄)(x− x̄) (7)

f(x) ≈ f(x̄) + f ′(x̄)(x− x̄) (8)

When applying this approximation to sinθ, the resultant linearization of Eq. (6) is
obtained, as shown in Eq. (9).

θ̈ + bθ̇ + a(sinθ̄ + cosθ̄(θ − θ̄)) = cvin (9)

The model’s plant input variable (u), which sums the reference input voltage with the
constants obtained from the linear representation of asinθ, can then be shown in Eqs. (10).

u = vin +
a

c
(cosθ̄(θ̄)− sinθ̄) (10)

θ̈ + bθ̇ + acosθ̄(θ) = cu (11)

Assuming initial conditions are set to zero, both Eqs. (9) & (11) simplifies to Eq. (12);
doing so would produce less than 16% error for |θ| < 1 rad. For theoretical simulations, this
is considered acceptable.

θ̈ + bθ̇ + aθ = cvin = cu (12)

2.1.1 State Space

Another method of system representation is through state space. The state variable x is
defined as angular position (θ) and angular velocity (θ̇). The following expressions utilize
the differential equations describing the motor for representing the position-voltage relation
in state space.

x =

[
θ

θ̇

]
(13)

ẋ =

[
θ̇

θ̈

]
(14)

Eq. (11) can thus be constructed in state space form, Eq. (17), using the following
relations.

ẋ1 = x2 (15)
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ẋ2 ≈ −acosθ̄x1 − bx2 + cu (16)

ẋ ≈
[

0 1
−acosθ̄ −b

]
x+

[
0
c

]
u (17)

2.1.2 Transfer Function

Using the Laplace transform of Eq. (11), the voltage-angle relationship of the system simplifies
to an approximate second-order transfer function, shown in Eq. (18). Assuming the linear
approximation is about θ = 0 rad, Eq. (19) can be used to approximate the system.

G(s) =
Θ(s)

U(s)
≈ c

s2 + bs+ acosθ̄
(18)

Θ

U
=

Θ

Vin
≈ c

s2 + bs+ a
(19)

2.2 System Identification Methods

2.2.1 Time Domain

A step response is a time domain method for system identification, specifically for low-order
systems. For second-order systems, several parameters can be obtained from the step
response: rise time (tr), settling time (ts), overshoot (OS), natural frequency (wn), damping
ratio (ζ) and the steady-state value (yss). For this lab, the three parameters used to evaluate
the system response are steady-state value, rise time, and overshoot. The steady-state value
served as resulting parameters from the other two parameters. Rise time can be related to
the natural frequency of the system such that tr ≈ 1.8/wn, and overshoot relates to the
damping ratio such that OS = exp(−πζ/

√
1− ζ2).

Based on the results from the previous Lab Notebook, the frequency domain presents
more reliable results than the time domain; the Bode plots within the frequency domain
provides a closer look at the experimental magnitudes across different frequency, which
facilitates more precise match-ups across the theoretical and experimental data. Thus, the
frequency domain is utilized for system identification purposes; however, the time domain
is used to compare the rise times, overshoots, and steady-state error with different values of
the controller inputs.

2.2.2 Frequency Domain

The alternative system identification method, better suited for complex systems, is through
the frequency domain. Assuming the system is a linear time-invariant (LTI) system, the
frequency of an input signal is equivalent to the frequency of the output from the system.
Additionally, by using the superposition principle associated with linear systems, these
frequencies can be analyzed individually and summed together. In essence, this method
can be utilized by creating a multi-sine input signal and determining the output frequencies
and magnitudes.
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Two parameters determine the resolution and maximum frequency that can be identified
from an experiment: the sampling period (dt) and experiment time (T ). Sampling period
determines the Nyquist frequency, or the maximum frequency content that can be identified
from a signal. This limitation is due to aliasing; the signal frequency can only be reconstructed
if the rate of sampling is twice the maximum frequency of the signal. If sampled less than
the Nyquist frequency, the signal appears to have lower frequency content. On the opposite
end, the experiment time T determines the frequency resolution that can be resolved during
reconstruction.

If the experiment is conducted correctly according to sampling and experiment time,
the data collected can be converted to the frequency domain via a Fourier transform. The
transfer function of the system can then be determined by taking the ratio of magnitudes
for the input and output signals. The system must reach steady-state for this method to
work, otherwise the ratio will contain excessive noise due to the transient response of the
system. This is accomplished through only recording data for the last half of an experiment.
To maintain the same T , the overall length of the multi-sine input must be doubled. After
post-processing the ratio of magnitudes, the resultant plot is the Bode magnitude of the
system.

2.3 Controller Design

The efforts proceeding the pendulum’s system identification involve the use of feedback
control, shown in Figure 3, to better meet the desired rise time, overshoot, and steady-state
value. To ascertain optimal results, several controller designs (C) are tested to identify
various advantages and disadvantages for the system. The controllers considered include the
following: PI controller, PD controller with gravity compensation, and PID controller.

Figure 3 illustrates the general feedback loop, applicable to the observed feedback pendulum
system. The reference input, Vin, is the desired input of the system, which is a default 1 V
for most controller experiments of the lab. The system output, Θ(s), represents to the angle
of the pendulum as defined in Figure 2. The disturbance is equal to d = a

c
sinθ, which is the

result of gravity.

2.3.1 PI Controller

To obtain optimal rise times, settling times, and overshoot for the identified second-order
system, the ideal objective is to move the system’s dominant pole further into the negative
real axis from a Root Locus perspective. Theoretically, this can be achieved using a P
controller or a PD controller.

The use of a P controller (C(s) = KP ) facilitates an increased natural frequency (wn),
thereby moving the dominant pole further in to the negative real axis. However, the ability
for a P controller to move the dominant pole of a second-order pendulum system is limited
by the mean of the two poles, after which overshoot grows substantially with increasing KP .
Another known disadvantage of a P controller is that steady-state error can never equal 0
using a finite KP gain, as shown in Figure 5(a). For these reasons, this controller type is not
tested experimentally.
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C(s) G(s)
Θ(s)

−
Vin(s)

d

n

Figure 3: General closed-loop feedback system. In this instance, R(s) represents the
input voltage, which is set to 1 V for comparative studies. C(s) is the controller design
of the feedback system, explained further in proceeding subsections. G(s) is the pendulum’s
transfer function with input U(s), and Θ(s) is the output angle. Note: Vin represents
the reference input voltage, analogous to reference angle, and not the input voltage of the
pendulum setup.

A PD controller (C(s) = KDs + KP ) can be implemented theoretically to obtain the
desired results from a Root Locus plot. By introducing a zero to the system that is
approximately equal to the dominant pole of the pendulum system, the dominant pole
essentially cancels out leaving only the non-dominant pole of the pendulum system. This
pole then can move further into the negative real axis with increasing gain, as shown in
Figure 5(b). While the results of a PD controller are ideal, the physical implementation
is non-causal, so it cannot be implemented physically without sensor data. Optimal KD

are additionally difficult to decide, because one cannot determine whether the plant’s input
voltage reaches saturation voltage.

The subsequent consideration is to design a causal controller that achieve desired effects
similar to the PD, by adjusting the PD controller to a lead-lag controller, shown in Eq. (20).
The lead controller achieves similar functionality to PD control- a zero is placed close to
the plant’s dominant pole for cancellation. The lead controller’s pole, on the other hand,
is inserted to ensure causality and is made large enough to provide maximum movement of
the pendulum’s pole without reaching the system’s saturation voltage. This portion of the
controller also increases the phase margin if stability at a certain frequency is needed. The
introduction of this pole does, however, limits the maximum displacement of the pendulum’s
pole. The lag controller is implemented in order to reduce the theoretical steady-state.
If the pole of the lag controller is set equal to an integrator—thereby representing a PI
controller—the steady error can be minimized. The lag’s zero and the controller’s gain, K
can then be adjusted for fine-tuning the step response. The simulated root locus of a lead-lag
controller are shown in Figure 5(c).

C(s) = K

(
s+ zlead
s+ plead

)(
s+ zlag
s+ plag

)
(20)

The previous three controller objectives and shortcomings validate the use and testing
of a PI controller for experimental purposes, shown in Eq. (21), with a form similar to that
of the lag controller in Eq. (20). The pure integrator theoretically eliminates the system’s
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Figure 4: Theoretical step responses for the various controller settings. The controller
chosen to be implemented on the physical system is the PI controller due to steady-state
value and better settling time compared to the lead-lag.

steady state error for a step response, while the zero serves to cancel out the pendulum
dominant pole. When using MATLAB tool, rltool, to generate this controller design, the
system’s step response exhibits quicker rise and settling times compared to the lead-lag
controller, as shown in Figure 4. Thus, the PI controller is the first decided controller to test
experimentally.

C(s) = KP +
KI

s
(21)

2.3.2 PD Controller with Gravity Compensation

One of the benefits of PD controller is that it does not have an integrator and does not
produce the windup phenomenon if the controller becomes saturated, however it does not
have the benefit of producing zero steady-state error to a step input. A gravity compensator
is a non-linear component of controller that introduces a theoretical input required to keep
the system, in the case of this lab a mass on the end of a beam, at the desired steady state.
This process is evaluated for each time step, providing an input equivalent to the energy
needed to maintain the state. In the case of the pendulum, this is the sinusoidal term shown
in Eq. (6). The controller output, as a differential equation, is shown in Eq. (22). In this
instance, the asinθ serves to cancel out the effects of gravity. The implementation of this
adjusted PD controller is feasible in this scenario since the Quanser machine comes with a
tachometer and since the system is linearized.
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Figure 5: Root locus of various controllers. (a) represents a proportional gain as the
controller, (b) is a pure zero, (c) is a lead-lag, which has the benefits of reducing steady state
error while decreasing overshoot, (d) is a lag controller with the pole centered on the origin,
known as a PI controller.

u(t) =
1

c
(a sin(θ)−KP (θ − r)−KDθ̇) (22)

With gravity compensation, the theoretical transfer function of the system under PD
control, shown in Eq. (23) can be formed with no need for Taylor series approximation.

Θ

Vin
=

KP

s2 + (b+KD)s+KP

(23)

This equation assumes the general second-order transfer function, Eq. (24), to estimate
values for KP and KD. Equations (25) & (26) shows the relation between the controller
constants and inherent parameters defined by the desired rise time and overshoot.

Y

R
=

w2
n

s2 + 2wnζs+ w2
n

(24)

KP = w2
n (25)
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KD = 2ζwn − b (26)

2.3.3 PID Controller

A PID controller is one of the default and widely used control laws. The controller provides
the benefits of PD control while introducing an integrator to drive steady-state error to zero.
By tuning the controller with the three gains KP , KD, KI , a desired overshoot, rise time,
and desired steady-state value can be achieved. The controller has the form of Eq. (27), and
has a DC gain of 1 from reference to output in closed loop.

C(s) = KP +KDs+
KI

s
(27)

3 Implementation
The frequency method validated in the previous Lab Notebook is used on the physical system
to identify a second-order model for the voltage-position relationship. The setup is in open
loop for the determining the voltage-velocity relationship. Once the experimental model of
the system is determined, the controller described in the proceeding sections is implemented
through Simulink.

3.1 System Identification

To determine the characteristics of the new system, a multi-sine input is used to produce
frequencies up to approximately 50 rad/s to collect points along the magnitude Bode plot.
Using the theoretical model described by the transfer function in Eq. (19), the experimental
data collected is used to determine the two pole locations p1 & p2. The relation of the poles
to the coefficients of the model are shown in the following relations Eq. (28) & (29).

p1,2 =
−b±

√
b2 − 4a

2
(28)

a = p1p2

b = p1 + p2
(29)

The experimental Bode plot of the pendulum system with the estimated model are shown
in Figure 6. The experiment time is run for 40 seconds, while data is collected for the last
20 seconds (T = 20 s) to remove the effect of the transient response on the reconstructed
signal. The sampling rate for the Quanser hardware is fixed at dt = 2 ms. Based off this
information, the frequency range of the multi-sine is at harmonics of the sampling frequency
given by 2π/T , up to twice the Nyquist frequency given by π/dt. From the plot, it is
estimated that the poles of the system occur at p1 = 1.5 and p2 = 20. An approximation
of the DC gain is 1.08. The resultant system is identified to have a transfer function of the
form in Eq. (12) with values of [30, 21.5, 32.4] for [a, b, c] respectively.
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Figure 6: Experimental Bode plot of pendulum system with estimated pole locations at
p1 = 1.5 and p2 = 20.

3.1.1 Preliminary Adjustments to Lab Experiment

In the first iterations of system identification, a pendulum without any additional weight is
tested. When identifying the lone pendulum model, however, the results are identical to that
of the first-order system from the previous Lab Notebook where K = 1.421 and τ = 0.021.
The moment inertia of the pendulum bar alone is negligibly small (J ≈ 0), causing Eq. (4) to
appear as a first-order system. This initial setup is adjusted by attaching a 100-g weight to
the end of the pendulum, thereby obtaining the results explained in the previous subsection.

3.2 Controller Design

With the system identified, it is necessary to define closed loop performance requirements
in order to implement a control law. For the purposes of preliminary development, the
requirements of rise time and percent overshoot are defined to be no greater than 0.1 sec
and 0.5%. These metrics have a direct effect on the closed loop pole locations of the system.
For this analysis, the reference input (vin) and the system output are set to 1 V and 1 rad.

3.2.1 PI Control

MATLAB function, rltool, is used to decide optimal parameters for KP and KI that achieve
the desired rise time and overshoot for a step response, resulting in KP = 9.05 and KI =
13.07.
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Figure 7: The model and experimental step responses when using a PI controller, where
KP = 9.0 and KI = 13.07. The experimental output exhibits a slightly higher overshoot,
and its steady state error falls below 1 rad due to the difference between kinetic and static
friction.

As shown in Figure 7, the experimental output exhibits a higher overshoot than the
model. Between 4 – 5 seconds, the experimental data goes from 1.0094 rad to 0.9956 rad,
which is caused by the difference between static and kinetic friction. Since the integrator
detects error between the reference input and system output, the controller attempts to
reduce the pendulum’s angle but must first overcome the motor’s static friction force. Once
this force is overcome the pendulum moves, but it overshoots its intended angle adjustment
since kinetic friction force is naturally smaller than its respective static friction force. This
results in a prolonged settling time of the pendulum’s angular velocity.

Since the Quarc software available limits the data export to 20 seconds, this controller
is considered insufficient for achieving minimal steady-state error. Though the use of an
integrator in this controller can guarantee minimization, the ideal settling time should be
within the 20-second constraint. For this reason, the other controllers are considered.

3.2.2 PD Control with Gravity Compensation

The desired results of the PD controller are a rise time of 0.1 s and an overshoot of 5%.
With these inputs, the resultant KP and KD values from Eq. (25) & (26) are 324 and 3.343,
respectively. Under these parameters, the experimental results exhibit an 8.15% overshoot
and a rise time of 0.0988 seconds. While the overshoot exceeds the desired output, the motor
does not reach saturation voltage, deeming this behavior acceptable in this application.
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The steady state value of the step response is 1.0017 radians, which is the closest
amplitude, greater than 1, that the encoder’s resolution can achieve signifying a minimum
steady-state error of the system. Additionally, the PD controller does not exhibit the same
drop in amplitude seen in the previous controller design. Thus, compared to the PI controller,
this PD controller design is a more suitable application for less steady state error and similar
rise times and overshoots.

Figure 8: The model and experimental step responses when using a PD controller with
gravity compensation, where KP = 324 and KD = 3.343. The experimental output exhibits
an overshoot 3.15% greater than what is desired, but its steady state error reaches a minimum
according to the encoder resolution.

Though the results of the PD controller with gravity compensation are positive in this
experiment, there exists a potential problem in its physical application. That is, the PD
controller assumes it reaches steady state when the angular velocity of the motor settles
at 0 rad/s, and the change in error (e) of the feedback loop across two or more iterations
reaches 0 rad (i.e. the encoder reads the same measurement after multiple iterations). If both
conditions are met, the PD controller maintains this angular position regardless of whether
the output angle actually equals the desired reference angle. Because the disturbance of the
system is known in this experiment, it can be compensated, but there are certain scenarios
where the disturbance cannot be predicted and account for in advance, which requires a PID
or other advanced controller instead. In preparation for future labs, the PID controller is still
tested to compare the results of a system when the disturbance is known and to recognize
any other trade-offs between the controller designs.
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3.2.3 PID Control

By introducing an integrator, particularly in the controller, the effect of disturbances are
mitigated. In the instance of the pendulum, the effect of gravity becomes more significant
since the angular position deviates from the equilibrium position. This, in essence, is an
additional input to the plant in the form of a disturbance. The majority of the controller
remains the same, with the gain coefficients for derivative and proportional gain staying
constant. An integral coefficient is determined through experimentation, as shown in figure
(9). The best fit for the system is a KI value equal to 300. In the state space formulation,
shown in Eq. (17), the controller output (u) is multiplied by a constant c. The value of KI

is divided by c to yield a gain of 9.26 and is used in the state-space formulation in Simulink.
The theoretical model is compared to the experimental system in Figure 10, where the two
closely correlate and exemplify the fact that introducing an integrator in the controller yields
the desired steady state within the resolution of the system’s encoder.

Figure 9: For the PID controller design, three KI constants are considered: 200, 300, and
400 to reduce the overshoot caused by static friction. Of the three values tested, a KI of 300
demonstrate the smallest effect from overshoot.

One of the main failure modes of this controller in the context of this system is due to
static friction. If the integrator is not tuned to a correct gain, the integrator will accumulate
to the point of overcoming the friction. This phenomenon results in oscillation over time from
continuous overshooting resulting from the difference between kinetic and static friction. In
addition to the problem described, adding an integrator can cause excessive overshoot when
initial error is high. Although this is not a problem due to our tests to find an optimal
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integrator constant, one method to avoid the overshoot is to saturate the integrator at a
desired threshold. This also prevents the windup phenomenon that can occur if saturation
is not considered when implementing an integrator that continuously compounds the error.

Figure 10: The model and experimental step responses when using a PID controller, where
KP and KD are the same values as the PD controller with gravity compensation. The
experimental output shows an 8.152% overshoot and 0.0995-second rise time, which are
identical to the PD controller.

3.3 State Feedback Implementation

In order to implement this experiment in state feedback, the block diagrams are adjusted
to compensate for MIMO systems. In the case of the pendulum the states, described in
Eq. (13), are the angular position and velocity. In simulation, this is implemented through
the use of MATLAB functions to describe the dynamics of the model, and construct the
controller output at each time step. The Simulink is shown in the Figure 11 using this
functionality. Although the system is not complex in terms of description (i.e. the values for
the proportional and derivative gain can be calculated analytically) this is not the case for
larger systems. To make the block diagrams more modular for MIMO systems, the MATLAB
command place is used to determine the position of the closed loop poles by solving for the
eigenvalues of the matrix A−BK where the matrix K corresponds to the values of [KP , KD].
In practice, this is used for the PID controller by assuming the system is compensating for
the effects of gravity (to obtain the same values as the PD controller) and then iterating
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Figure 11: Simulink block utilizing state feedback of the Quarc’s sensor measurements.
The control law implemented in this case is PID.

the value for the integral gain. The results are effectively the same, but the state feedback
approach can be used for more complex systems in the future.

4 Conclusion
In this notebook, the theoretical model of the system is derived based on electro-mechanical
equations of motion. It is feasible to model the pendulum setup as a second-order system to
relate input voltage to output position. The parameters of the system are identified through
a multi-sine input to the system and the resulting magnitudes of the output frequencies.
This is done assuming linearity and time invariance such that the superposition principle
holds. The experimental Bode plot is used to estimate the pole location of the system.
Converting the poles to the general form of the system’s transfer function allows for an
additional representation in state space to perform state feedback. The preceding methods
of identification produced an estimated DC term of K = 1.08 with poles located at p1 = 1.5
and p2 = 20. In addition to identifying the model of the system, a large component of the lab
is focused on controller design. Of the various controllers used in this lab, the theoretical PI
controller responds the quickest with minimal overshoot and has a zero steady-state error,
as shown in Figure 4. The theoretical use of a PD controller has the best performance but
is not used because the controller is a pure zero and is therefore non-causal.

The PI controller design for the pendulum exhibits the stick-slip phenomenon, where the
effect of static friction is significant enough to stop the position of the pendulum from
reaching the desired steady state; this effect compounds the error accumulated by the
integrator until a torque large enough to overcome the static friction is produced. In this
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instance, static friction changes to kinetic friction and the pendulum overshoots the desired
position. This oscillation continues and the system does not reach the desired reference.
Although this performance is not satisfactory, there are methods to reduce the effect, as
shown through the PD and PID controllers.

A gravity compensator is used in conjunction with a PD controller to achieve a lower
steady-state error. In the case of this system, the effect of gravity on the mass can be modeled
as a disturbance. The performance also does not exhibit the stick-slip phenomenon that the
PI controller introduced. This controller design proves useful in this pendulum application,
however it has potential for steady-state error if the disturbance is unknown.

Another way to reduce the stick-slip phenomenon while accounting for an unknown
disturbance is to tune the KI gain of a PID controller, which also avoids any saturation
and reduces overshoot. For this pendulum setup, the gain of the integrator performs best
when set to 300. If overshoot is of a concern, the integrator can also be saturated to negate
excessive overshoot caused by the initial error in position. A benefit of using an integrator,
aside from theoretically matching a reference step, is disturbance rejection. Although the
effect of gravity on the pendulum is known in this case, it is not always quantifiable. In
order to reject the effects of an unknown disturbance on a system, the controller is required
to have an integrator.
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5 Appendix II: MATLAB Code

1 %% I n i t i a l i z e
2 c l o s e a l l ; c l e a r a l l ; c l c ;
3

4 %% Desired Parameters
5

6 OS = 0 . 0 5 ;
7 t_r = 0 . 1 0 ;
8

9 p = [ 1 . 5 , 2 0 ] ;
10 temp = conv ( [ 1 p (1 ) ] , [ 1 p (2 ) ] ) ;
11

12 a = temp (3) ; % c
13 b = temp (2) ; % −−−−−−−−−−−−−
14 c = 1.08 ∗ a ; % s^2 + bs + a
15 % c = 0.721 ∗ a ;
16

17 w_n = 1.8 / t_r ;
18 zeta = sq r t ( l og (OS)^2 / ( p i ^2 + log (OS) ^2) ) ;
19

20 K_P = w_n^2;
21 K_D = 2 ∗ zeta ∗ w_n − b ;
22 K_I = 300 ;
23 %% Load data
24 % load stepdata_01_28 .mat % For sytemID_time
25 % load fakeStepData .mat
26 % load freqdata_T5_N150_A30 .mat % For pos tProces s .m
27 load ( ’Old Data/freqdata_closed_T5_N150_A30 .mat ’ )
28

29 % K = 1 ; % Fake step data
30 % tau = 0 . 1 5 ;
31 % tau = 0.026296888692402 ; % F i r s t round o f ID
32 % K = 1.337053064415507 ;
33 tau = 0 . 0209 ; % Second round o f ID
34 % K = 1.340980879186844 ;
35 K = 1 .4204 ;
36 % Def ine Parameters
37 dt = 0 . 0 0 2 ; % Sampling time
38 T = 20 ; % Time o f experiment
39 N = 150 ; % Number o f s i n e waves
40 A = 15 / N;
41 i = ( 1 :N) ’ ;
42 w = 2∗ pi /T∗ i ; % Frequency
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43 % phi = 2∗ pi /N∗ i ; % Chirp
44 phi = 2∗ pi ∗ rand (1 ,N) ’ ; % Random Noise
45

46 % System Model
47 num = K;
48 % den = [ tau 1 ] ; % v e l o c i t y
49 den = [ tau 1 0 ] ; % Theta
50

51 % Frequenc ie s o f f f t
52 w_nyq = pi /dt ;
53 w_res = 2∗ pi /T;
54 w_plot = 0 : w_res :2∗w_nyq−w_res ;
55

56 % Check input
57 dt = 0 . 0 0 2 ;
58 t_f = 2∗T−dt ;
59 t = 0 : dt : t_f ;
60

61 % Create input mu l t i s i n e
62 u = A∗ s i n (w∗ t+phi ) ;
63 u = sum(u) ;
64

65 % Ver i fy bounded between (−10 ,10) otherwi s e re−i t e r a t e
66 whi le a l l (u <= −10 & u >= 10)
67 phi = 2∗ pi ∗ rand (1 ,N) ’ ; % Random Noise
68 u = A∗ s i n (w∗ t+phi ) ;
69 u = sum(u) ;
70 end
71

72 % Cont r o l l e r
73 load ( ’ c_bar_2 .mat ’ )
74 C_z = c2d (C, dt , ’ zoh ’ ) ;
75 a = C_z. z {1} ;
76 b = C_z. p{1} ;
77 K_lead = C_z.K;

1 %% I n i t i a l i z a t i o n
2

3 c l o s e a l l
4

5 run i n i t i a l i z e .m
6 t_save = t ;
7 o f f s e t = 0 . 0220 ; % Rest ing vo l tage
8

9 %% Fi t t i n g Omega
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10

11 i f strcmp ( sim_names{sim_idx } , ’ System I d e n t i f i c a t i o n Omega ’ )
12

13 w_max2 = 20 ;
14

15 idx = f l o o r ( l ength ( v e l o c i t y ) / 2) + 1 ;
16 y = v e l o c i t y ( idx : end ) − o f f s e t ;
17 u = v_in ( idx : end ) ;
18 t = t_save ( 1 : l ength (y ) ) ;
19 w_plot = w_plot ( 1 : l ength (y ) ) ;
20 plot_idxs = [ 4 ] ;
21

22 Y = ( f f t ( y ) ) / l ength (y ) ∗ 2 ; % Frequenc ie s o f output s i g n a l
23 U = ( f f t (u) ) / l ength (u) ∗ 2 ;
24

25 G_mag_exp = Y ./ U;
26 G_mag_exp(1) = G_mag_exp(2) ;
27 K2 = mean( abs (G_mag_exp(w_plot < w_max2) ) ) ;
28

29

30 % f = @( beta , t ) beta (1 ) ∗ (1 − exp(−t / beta (2 ) ) ) ;
31 % beta0 = [ 1 ; 1 ] ;
32 %
33 % beta = n l i n f i t ( t , y , f , beta0 ) ;
34 % K = beta (1 ) ;
35 % tau = beta (2 ) ;
36

37 f p r i n t f ( ’The f i t t e d parameters are K = %.4 f and tau = %.4 f . \ n ’ , K, tau ) ;
38

39 G_ol_th = t f (K, [ tau 1 ] ) ;
40 [G_ol_mag_th , ~ ] = bode (G_ol_th , w_plot ) ;
41 G_ol_mag_th = squeeze (G_ol_mag_th) ;
42

43 % f i g u r e 3 = f i g u r e ;
44 % axes1 = axes ( ’ Parent ’ , f i g u r e 3 ) ;
45 % hold ( axes1 , ’ on ’ ) ;
46 % plot2 = p lo t ( t , y ) ;
47 % plot1 = p lo t ( t , f ( beta , t ) ) ;
48 % se t ( plot1 , ’ DisplayName ’ , ’ Theore t i ca l ’ , ’ LineWidth ’ , 2 ) ;
49 % se t ( plot2 , ’ DisplayName ’ , ’ Experimental ’ , ’ LineWidth ’ , 2 ) ;
50 % y lab e l ( ’ Amplitude ’ , ’ HorizontalAl ignment ’ , ’ center ’ ) ;
51 % x lab e l ( ’Time ( s ) ’ ) ;
52 % box ( axes1 , ’ on ’ ) ;
53 % se t ( axes1 , ’ FontName ’ , ’ Times New Roman’ , ’ FontSize ’ , font_s ize , . . .
54 % ’XMinorTick ’ , ’ on ’ ) ;
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55 % legend1 = legend ( axes1 , ’ show ’ ) ;
56 % se t ( legend1 , ’ FontSize ’ , font_s ize , ’ Location ’ , ’ best ’ ) ;
57

58 pr in t ( gcf , f i l ename+’_theo_vs_exp . png ’ , ’−dpng ’ , ’−r300 ’ ) ;
59

60 f i g u r e ;
61 semi logx (w_plot , db (G_ol_mag_th) )
62 hold on ;
63 semi logx (w_plot , db ( abs (G_mag_exp) ) )
64

65 % sim_names{sim_idx} = ’ System I d e n t i f i c a t i o n Theta Open Loop ’ ;
66

67 end
68

69 %% Post Proce s s ing Sc r i p t
70

71 switch sim_names{sim_idx}
72 case ’Code Va l idat i on ’
73 y = ls im ( t f (num, den ) , u , t ) ;
74 plot_idxs = [ 1 , 2 , 3 ] ;
75 i s_c l o s ed = f a l s e ;
76 case ’ System I d e n t i f i c a t i o n Theta Open Loop ’
77 t = ( 0 : dt :T−dt ) ’ ;
78 idx = length ( v_in ) − l ength ( t ) + 1 ;
79 u = v_in ( idx : end ) ;
80 y = theta ( idx : end ) ;
81 G_ol = t f (num, den ) ;
82 plot_idxs = [ 2 , 4 ] ;
83 i s_c l o s ed = f a l s e ;
84 case ’ System I d e n t i f i c a t i o n Theta Closed Loop ’
85 t = ( 0 : dt :T−dt ) ’ ;
86 idx = length ( v_in ) − l ength ( t ) + 1 ;
87 u = v_in ( idx : end ) ;
88 y = theta ( idx : end ) ;
89 G_ol = t f (num, den ) ;
90 G_cl = C ∗ G_ol / (1 + C ∗ G_ol) ;
91 plot_idxs = [ 2 , 4 ] ;
92 i s_c l o s ed = true ;
93 end
94

95 % Four ie r Transform
96 U = f f t (u) ; % Frequenc ie s o f input s i g n a l
97 Y = f f t ( y ) ; % Frequenc ie s o f output s i g n a l
98

99 % w_plot = w_plot (w_plot <= w_max) ;
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100 % U = U(1 : l ength (w_plot ) ) ;
101 % Y = Y(1 : l ength (w_plot ) ) ;
102

103 % Obtain d i s c r e t e bode p l o t o f t r a n s f e r func t i on
104 G_ol = c2d (G_ol , dt , ’ zoh ’ ) ;
105 [G_ol_mag_th , ~] = bode (G_ol , w_plot ) ;
106 G_ol_mag_th = squeeze (G_ol_mag_th) ;
107

108 i f i s_c l o s ed
109 G_cl = c2d (G_cl , dt , ’ zoh ’ ) ;
110 [G_cl_mag_th , ~] = bode (G_cl , w_plot ) ;
111 G_cl_mag_th = squeeze (G_cl_mag_th) ;
112 end
113

114 % Calcu la te exper imenta l t r a n s f e r func t i on
115 G_mag_exp = Y./U; % Output/ Input
116 G_mag_exp( abs (U) < 1e−3) = 0 ; % Remove no i s e in input s i g n a l
117 G_mag_exp(1) = 0 ; % Remove non−e x i s t e n t DC s i g n a l
118

119 %% Plots
120

121 f o r plot_idx = plot_idxs
122 switch plot_idx
123

124 case 1 % Experimental Time Domain Plot ( input vs . output )
125

126 f i g u r e 1 = f i g u r e ;
127 axes1 = axes ( ’ Parent ’ , f i g u r e 1 ) ;
128 hold ( axes1 , ’ on ’ ) ;
129 p lo t1 = p lo t ( t , u ) ;
130 p lo t2 = p lo t ( t , y ) ;
131 s e t ( plot1 , ’ DisplayName ’ , ’ Input ’ , ’ LineWidth ’ , 2 ) ;
132 s e t ( plot2 , ’ DisplayName ’ , ’Output ’ , ’ LineWidth ’ , 2 ) ;
133 y l ab e l ( ’ Amplitude ’ , ’ Hor izontalAl ignment ’ , ’ c en t e r ’ ) ;
134 x l ab e l ( ’Time ( s ) ’ ) ;
135 box ( axes1 , ’ on ’ ) ;
136 s e t ( axes1 , ’FontName ’ , ’ Times New Roman ’ , ’ FontSize ’ , font_s ize , . . .
137 ’ XMinorTick ’ , ’ on ’ ) ;
138 l egend1 = legend ( axes1 , ’ show ’ ) ;
139 s e t ( legend1 , ’ FontSize ’ , font_s ize , ’ Locat ion ’ , ’ bes t ’ ) ;
140 ax i s t i g h t
141 pr in t ( gcf , f i l ename+’_time . png ’ , ’−dpng ’ , ’−r300 ’ ) ;
142

143 case 2 % Bode Plot Comparison
144
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145 i dxs = w_plot < w_max;
146

147 % Overlay t h e o r e t i c a l and exper imenta l
148 f i g u r e 2 = f i g u r e ;
149 axes1 = axes ( ’ Parent ’ , f i g u r e 2 ) ;
150 hold ( axes1 , ’ on ’ ) ;
151 i f i s_c l o s ed
152 semi logx1 = semi logx (w_plot ( idxs ) , [ db ( abs (G_cl_mag_th( idxs ) ) ) , . . .
153 db( abs (G_mag_exp( idxs ) ) ) ] ) ;
154 e l s e
155 semi logx1 = semi logx (w_plot ( idxs ) , [ db ( abs (G_ol_mag_th( idxs ) ) ) , . . .
156 db( abs (G_mag_exp( idxs ) ) ) ] ) ;
157 end
158 s e t ( semi logx1 (1 ) , ’ DisplayName ’ , ’ Theo r e t i c a l ’ , ’ LineWidth ’ , 2 ) ;
159 s e t ( semi logx1 (2 ) , ’ DisplayName ’ , ’ Experimental ’ , ’Marker ’ , ’ o ’ , . . .
160 ’ L ineSty l e ’ , ’ none ’ ) ;
161 y l ab e l ( ’Magnitude (dB) ’ , ’ Hor izontalAl ignment ’ , ’ c en t e r ’ ) ;
162 x l ab e l ( ’ Frequency ( rad/ s ) ’ ) ;
163 xlim ( axes1 , [ 3 500 ] ) ;
164 box ( axes1 , ’ on ’ ) ;
165 ax i s t i g h t
166 s e t ( axes1 , ’FontName ’ , ’ Times New Roman ’ , ’ FontSize ’ , font_s ize , ’ XMinorTick ’ , ’ on ’ , . . .
167 ’ XScale ’ , ’ l og ’ ) ;
168 l egend2 = legend ( axes1 , ’ show ’ ) ;
169 s e t ( legend2 , ’ FontSize ’ , font_s ize , ’ Locat ion ’ , ’ bes t ’ ) ;
170

171 pr in t ( gcf , f i l ename+’ _freq . png ’ , ’−dpng ’ , ’−r300 ’ ) ;
172

173 case 3 % Four i e r trans form p lo t
174

175 f i g u r e ( ’Name ’ , ’ Four i e r Transorms ’ ) ;
176 subplot ( 2 , 1 , 1 )
177 stem (w_plot , abs (U) ) ; % Create subplot o f f f t Y
178 xlim ( [ 0 w_plot ( end ) ] ) ;
179 y l ab e l ( ’ Input ’ )
180 subplot ( 2 , 1 , 2 )
181 stem (w_plot , abs (Y) ) ; % Create subplot o f f f t U
182 xlim ( [ 0 w_plot ( end ) ] ) ;
183 x l ab e l ( ’ Frequency ( rad/ s ) ’ ) ;
184 y l ab e l ( ’ Input ’ )
185

186 case 4 % Theo r e t i c a l vs . Experimental Time Domain Plot ( s tep )
187

188 i f i s_c lo s ed
189 y_th = ls im (G_cl , u , t ) ;
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190 e l s e
191 y_th = ls im (G_ol , u , t ) ;
192 end
193

194 f i g u r e 3 = f i g u r e ;
195 axes1 = axes ( ’ Parent ’ , f i g u r e 3 ) ;
196 hold ( axes1 , ’ on ’ ) ;
197 p lo t2 = p lo t ( t , y ) ;
198 p lo t1 = p lo t ( t , y_th) ;
199 s e t ( plot1 , ’ DisplayName ’ , ’ Theo r e t i c a l ’ , ’ LineWidth ’ , 2 ) ;
200 s e t ( plot2 , ’ DisplayName ’ , ’ Experimental ’ , ’ LineWidth ’ , 2 ) ;
201 y l ab e l ( ’ Amplitude ’ , ’ Hor izontalAl ignment ’ , ’ c en t e r ’ ) ;
202 x l ab e l ( ’Time ( s ) ’ ) ;
203 box ( axes1 , ’ on ’ ) ;
204 ax i s t i g h t
205 s e t ( axes1 , ’FontName ’ , ’ Times New Roman ’ , ’ FontSize ’ , font_s ize , . . .
206 ’ XMinorTick ’ , ’ on ’ ) ;
207 l egend1 = legend ( axes1 , ’ show ’ ) ;
208 s e t ( legend1 , ’ FontSize ’ , font_s ize , ’ Locat ion ’ , ’ bes t ’ ) ;
209

210 pr in t ( gcf , f i l ename+’_theo_vs_exp . png ’ , ’−dpng ’ , ’−r300 ’ ) ;
211

212 end
213 end

1 %% Lab 02 Fu l l
2 % System I d e n t i f i c a t i o n − Pendulum
3 c l e a r a l l ; c l o s e a l l ; c l c ;
4

5 % Load in Experimental Data
6 load bar_T20_N150_A . 1 . mat
7

8 % Experiment Params
9 dt = 0 . 0 0 2 ; % Sampling time

10 T = 20 ; % Time o f experiment ( Simulink : 2∗T−dt )
11

12 % Frequenc ie s o f f f t
13 w_nyq = pi /dt ;
14 w_res = 2∗ pi /T;
15 w_plot = 0 : w_res :2∗w_nyq−w_res ; % Sampled Frequenc ie s
16

17 % Determine Bode Plot
18 o f f s e t = 0 . 0220 ; % Rest ing vo l tage
19 u = v_in ; % Re−a s s i gn v a r i a b l e s
20 y = theta ;
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21 t = ( 0 : dt :T−dt ) ’ ;
22 U = f f t (u) ; % Assumes t r an s i e n t has been cut
23 Y = f f t ( y ) ;
24 H = Y./U; % Output/ Input
25 H( abs (U) < 1e−3) = 0 ; % Remove no i s e in input s i g n a l
26

27 % From exper imenta l data , determined the model o f the system to be :
28 p = [ 1 . 5 , 2 0 ] ; % system po l e s
29 temp = conv ( [ 1 p (1 ) ] , [ 1 p (2 ) ] ) ;
30 a = temp (3) ; % c
31 b = temp (2) ; % −−−−−−−−−−−−−
32 c = 1.08 ∗ a ; % s^2 + bs + a
33 G = t f ( c , [ 1 b a ] ) ;
34

35 % Theo r e t i c a l Bode Plot
36 [mag , phase ] = bode (G, w_plot ) ;
37 mag = squeeze (mag) ;
38 phase = squeeze ( phase ) ;
39

40 % Generate Bode Plot Experimental and Theo r e t i c a l
41 f i gu r e ,
42 semi logx (w_plot , db ( abs (H) ) ) ;
43 hold on
44 semi logx (w_plot , db ( abs (mag) ) ) ;
45 xlim ( [ 0 . 1 , 1 0 0 0 ] )
46

47 %% Cont ro l l e r Root Locus
48 % Designed a lag c o n t r o l l e r us ing r l t o o l − want to i n c r e a s e performance o f
49 % system whi le not in t roduc ing add i t i ona l overshoot
50 f i gu r e ,
51

52 % Propor t i ona l
53 subplot ( 2 , 2 , 1 )
54 r l o c u s (G) ;
55

56 % PD (Pure zero )
57 subplot ( 2 , 2 , 2 )
58 load RootLocusPlot_Bar\C_PD.mat
59 C_PD = C;
60 r l o c u s (C_PD∗G) ;
61

62 % Lead−Lag
63 subplot ( 2 , 2 , 3 )
64 load RootLocusPlot_Bar\C_leadLag .mat
65 C_leadLag = C;
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66 r l o c u s (C_leadLag∗G) ;
67

68 % PI
69 subplot ( 2 , 2 , 4 )
70 load RootLocusPlot_Bar\C_bar_2 .mat
71 C_PI = C;
72 r l o c u s (C_PI∗G)
73

74 %% Step Responses with Con t r o l l e r s
75 f i gu r e ,
76 hold on
77 [ sys1 , t1 ] = step ( feedback (9 . 96∗G, 1 ) , 1 . 5 ) ;
78 [ sys2 , t2 ] = step ( feedback (C_PD∗G, 1 ) , 1 . 5 ) ;
79 [ sys3 , t3 ] = step ( feedback (C_leadLag∗G, 1 ) , 1 . 5 ) ;
80 [ sys4 , t4 ] = step ( feedback (C_PI∗G, 1 ) , 1 . 5 ) ;
81 p lo t ( t1 , sys1 , t2 , sys2 , t3 , sys3 , t4 , sys4 , ’ LineWidth ’ , 1 . 5 )
82 l egend ( ’P ’ , ’PD’ , ’ Lead−Lag ’ , ’ PI ’ )
83

84 %% Lead−Lag Implemented
85 load data_step_C_bar_2_trial_1 .mat
86 L = C∗G;
87 [ data , t ] = step ( c2d ( feedback (L , 1 ) , dt ) ,20) ;
88 f i gu r e ,
89 hold on
90 p lo t ( time−1, theta ) ;
91 p lo t ( t , data ) ;
92 xlim ( [ 0 2 0 ] )
93 l egend ( ’ Experimental ’ , ’Model ’ )
94 pos = get ( gcf , ’ Po s i t i on ’ ) ;
95 s e t ( gcf , ’ Po s i t i on ’ , [ pos ( [ 1 2 4 ] ) pos (4 ) ] ) ;
96 p lo t ( t , data )
97

98 %% PD with Gravity Compensator
99 load ( ’Bar Data 2_20\data_PD_gravcomp_exp_1 .mat ’ , ’ theta ’ , ’ time ’ )

100 exp = theta ;
101 load ( ’Bar Data 2_20\data_PD_gravcomp_theo_20 .mat ’ , ’ theta ’ )
102

103 f i gu r e ,
104 hold on
105 p lo t ( time−1,exp , time−1, theta )
106

107 %% PID
108 f i g u r e
109 hold on
110 load ( ’Bar Data 2_20\data_PID_KI300_exp .mat ’ , ’ time ’ , ’ theta ’ )
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111 p lo t ( time−1, theta )
112 load ( ’Bar Data 2_20\data_PID_KI300_theo .mat ’ , ’ time ’ , ’ theta ’ )
113 p lo t ( time−1, theta )
114 l egend ( ’ Experimental ’ , ’Model ’ )
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