
Notebook 3: Ball and Beam System
Identification

Written by:
Riley Kenyon & Gabe Rodriguez
ECEN 5038: Control Systems Lab

Mar. 19, 2020

Contents
1 Problem Statement 2

2 Theory 3
2.1 Pendulum Theoretical Model . 3

2.1.1 State Space . 4
2.1.2 State Space for Tracking a Sine Wave 4
2.1.3 Transfer Function . 5

2.2 Ball and Beam Theoretical Model . 5
2.2.1 Motor Dynamics . 6
2.2.2 State Space . 7
2.2.3 Transfer Function . 8

2.3 System Identification Methods . 8
2.3.1 Time Domain . 8
2.3.2 Frequency Domain . 9

2.4 Controller Design . 9
2.4.1 PID Controller . 10
2.4.2 LQR Controller . 10
2.4.3 LQI Controller . 11

3 Implementation 11
3.1 System Identification . 12

3.1.1 Ball and Beam . 12
3.1.2 Motor Dynamics . 13

3.2 Controller Design . 14
3.3 State Feedback Implementation . 14

3.3.1 Ball and Beam . 14
3.4 LQR Control . 16

3.4.1 Analyzing Sensitivity of Parameters 16
3.5 Optimal LQR Parameters . 18

3.5.1 Pendulum . 18
3.5.2 Ball and Beam . 19

3.6 LQI Filter for Pendulum . 19
3.6.1 Using LQI Filter for Tracking a Sine Wave 22

4 Conclusion 22

5 Appendix II: MATLAB Code 24

1

1 Problem Statement
The rotary servo base unit offered by Quanser is a fundamental component to subsequent
rotary systems used in this lab. The motor is controlled by a DAC and power amplifier
to provide the voltage range (-10V, 10V). There are two sensors on the motor module: a
tachometer measures angular velocity and an encoder measures absolute angular position.
The resolution of the encoder is 4096 pulses per revolution, which provides a discernible
difference in position of 0.088◦. The tachometer is filtered through the power amplifier and
is measured to a 1:1 ratio of voltage to angular velocity in radians per second. Both sensor
signals are connected to an ADC and are imported into MATLAB/Simulink using the Quarc
software offered by Quanser. In addition to the original motor hardware, this notebook’s
setup includes an additional sensor to measure variable resistance for determining position.
Figure 1 references the new setup of the system.

Figure 1: Connecting the SRV02 to a single channel amplifier and two channel DAQ (Image
courtesy of the SRV02 User Manual). For the purposes of the lab, the tachometer output is
connected directly to the S1&S2 port of the amplifier (not depicted), and the ball position
sensor instead is connected to S3.

In this notebook, one objective is to design various control laws for a pendulum system
and implement the compensation techniques to achieve minimal steady state error, rise time,
and overshoot. The model for the pendulum system has been derived and identified using
time- and frequency-based system identification in the previous notebook. Another objective
of the notebook begins the design cycle again with the ball and beam module. The notebook
ultimately concludes by comparing various control schemes on the new module.

2

2 Theory

2.1 Pendulum Theoretical Model

Amotor can be modeled as a coiled wire that produces a back voltage from an inertia-resisting
motion. In terms of electrical components, this includes a resistance and inductance, modeled
by an RL circuit. The mechanical parameters of a pendulum setup include a moment
of inertia (J), total pendulum mass (m), centroid length (L), and damping (µ). The
electro-mechanical coupling that occurs between the components is defined using coefficients
km and kτ , gained from the back voltage and torque-current relations of the motor.

Figure 2: The pendulum setup observed in the previous lab notebook. The effects of
gravity introduce a disturbance to the system, and its impact is mitigated through the use
of different controller designs.

Recall the pendulum model has the following representation from the previous notebook:

θ̈ +
µR + kτkm

JR
θ̇ +

1

2

mgl

J
sin θ =

kτ
JR

vin (1)

For simplicity, the respective coefficients of θ̇, θ, and vin are lumped and labeled as b, a,
and c; Eq. (2) is used for any proceeding theoretical equation developments within this lab
report.

θ̈ + bθ̇ + a sin θ = cvin (2)

Assuming initial conditions are set to zero and the system is linearized around the
equilibrium point of zero angular position and velocity, Eq. (2) simplifies to Eq. (3); doing
so would produce less than 16% error for |θ| < 1 radian. For theoretical simulations, this is
considered acceptable.

θ̈ + bθ̇ + aθ = cvin = cu (3)

3

2.1.1 State Space

Another method of system representation is through state space. The state variable x is
defined as angular position (θ) and angular velocity (θ̇). The following expressions utilize
the differential equations describing the motor for representing the position-voltage relation
in state space.

x =

[
θ

θ̇

]
(4)

ẋ =

[
θ̇

θ̈

]
(5)

Eq. (3) can thus be constructed in state space form, Eq. (8), using the following relations.

ẋ1 = x2 (6)

ẋ2 ≈ −ax1 − bx2 + cu (7)

ẋ ≈ Ax+Bu =

[
0 1
−a −b

]
x+

[
0
c

]
u (8)

2.1.2 State Space for Tracking a Sine Wave

One of the additional goals for the pendulum setup is to track an input sine wave, using the
state space model. In order to track a sine wave, the plan input reference, ur, needs to also
be a sine wave of with desired frequency, ω, as shown in Eq. (9).

ur(t) = γ sin(ωt+ β) (9)

Assuming a γ and β of 1 and 0, respectively, the state equations can be represented as:

ż = 0z + 1(r − y)

ν = 1z + 0(r − y)
(10)

In state space, the parameters a modeled by:

ż = Az +B(r − y) =

[
0 ω
−ω 0

]
z +

[
1
0

]
(r − y) (11)

These replacement of u with (r−y) (or e) are accounted for within the Simulink, however
this change does not need to accounted for with the usage of an LQR or LQI filter explained
below.

4

Figure 3: A model of the ball beam driven by the motor lever arm where α is near zero.
(Image courtesy of University of Michigan)

2.1.3 Transfer Function

Using the Laplace transform of Eq. (3), the voltage-angle relationship of the system simplifies
to an approximate second-order transfer function. Assuming the linear approximation is
about θ = 0 rad, Eq. (12) can be used to approximate the system.

Θ

U
=

Θ

Vin
≈ c

s2 + bs+ a
(12)

2.2 Ball and Beam Theoretical Model

Outside of kinematics, another common way to model systems and determine theoretical
models is through Euler-Lagrange equations or Lagrangian dynamics. The Lagrangian is
defined as:

L ≡ K − V (13)

where K and V represent kinetic energy and potential energy of the system, respectively. In
particular, the Euler-Lagrange equation is equal to:

d

dt

(
∂L
∂ẋ

)
−
(
∂L
∂x

)
= τ (14)

where the parameter x is a differentiable variable of the Lagrangian, which the system is
dependent on, and τ is the generalized force. By computing the Euler-Lagrange equation,
the resultant differential equation describes the dynamics of the system.

The ball and beam module, seen in 3 can be decompose into several components to obtain
a model for the position of the ball. The kinetic energy of the system can be described using
the angular velocity of the beam, rotational energy of the ball, and linear velocity of the
ball. Using,

K =
1

2
Jbω

2
b +

1

2
mv2b +

1

2
Jbeamα̇

2 (15)

5

where Jb and Jbeam describe the mass moment of inertia of the ball and beam, and α is
the angular position of the beam. The potential energy of the system can be described as:

V = mgp sinα (16)

Replacing the angular velocity of the ball in terms of the linear velocity of the ball, the
Lagrangian can be simplified to the following:

L =
1

2
Jb

(
ṗ

r
+ α̇

)2

+
1

2
m
(
ṗ2 + p2α̇

)
−mgp sinα (17)

Converting the expression into the Euler-Lagrange equation results in Eq. (18):(
Jb
R2

+m

)
p̈+mg sinα−mpα2 = 0 (18)

By assuming the torque applied to the beam is proportional to the vertical distance the
beam is displaced, it is also assumed that the linearization around α is equal to zero. The
expression for α can be expressed in terms of the overall beam length (l) and radius of the
gear radius (d):

α =
d

l
θ (19)

Using this approximation, Eq. (18) is simplified to the expression(
Jb
R2

+m

)
p̈ = −mgd

l
θ (20)

where the system is approximated to operate about the equilibrium position of α equal to
zero. The differential equation describes how the motor position affects the ball acceleration.
For the purposes of system identification, the coefficients of the equation are combined
into a single parameter describing the relationship between motor shaft angle θ and linear
acceleration of the ball p̈. The resulting relation is shown below.

p̈ = cθ (21)

2.2.1 Motor Dynamics

In order to incorporate the differential equation into a model of the entire system, it is
important to consider the dynamics of the motor as well. Recall the differential equations
that govern a DC motor, revised to reflect a force (Fy) exerted at a lever arm (d) shown in
Figure 3.

Jθ̈ = τ − µθ̇ − Fyd cos θ (22)

vin = Ri+ L
di

dt
+ vm (23)

τ = kτ i (24)

6

vm = kmθ̇ (25)

When combining Eqs. (22) – (25) and assuming negligible motor inductance, the resultant
equation is a non-linear differential equation, as shown in Eq. (26).

θ̈ +
µR + kτkm

JR
θ̇ +

Fyd

J
cos θ =

kτ
JR

vin (26)

Assuming a negligible external force on the motor shaft (Fy), the working equation
simplifies further:

θ̈ +
µR + kτkm

JR
θ̇ =

kτ
JR

vin (27)

For the purposes of system identification, the coefficients are represented by lumped
variables and are determined experimentally. The resultant equation is:

τ θ̈ + θ̇ = Kvin (28)

where τ is a time constant and K is the DC gain of the system.

2.2.2 State Space

Representing the system in state-space is beneficial for state-feedback and state controller
designs. Using the relation from Eqs. (28) & (21), the system is fully described and can be
represented in state space as

ẋ =

0 1 0 0
0 0 c 0
0 0 0 1
0 0 0 −1

τ

x+

0
0
0
K
τ

 vin (29)

y =

1 0 0 0
0 0 1 0
0 0 0 1

x+

0
0
0

 vin (30)

where the states of the system are defined as:

x =

p
ṗ
θ

θ̇

 (31)

One detail to note about the system is that the sensor data does not encompass all
the states. In order to utilize all the states of the system, a form of state estimation is
implemented to obtain an estimated measurement. There are several filters that provide
state estimates; of the most famous are a Kalman filter and a derivative filter. In this
notebook, the derivative filter modelled by Eq. (32) is used to estimate the the velocity ṗ of
the ball by taking the derivative of the sensor measurement p.

7

T (s) =
s

(s/ωo + 1)2
(32)

The derivative filter acts as a derivative until a particular frequency of ωo where it drops
off.

2.2.3 Transfer Function

The transfer function from applied voltage to the location of the ball is useful in ultimately
controlling the system. However, arguably more important is the decomposition of the
governing transfer function into decoupled components that can be experimentally identified.
The relationship between applied voltage and output motor shaft angle, as a transfer function,
can be described as:

Θ(s)

Vin(s)
=

K

s(τs+ 1)
(33)

These are the parameters that are intrinsic to the motor itself. In particular, it is useful
to perform the same identification to determine if the assumption that the resting load on the
motor lever arm is negligible in the dynamics of the system. If it is appropriate to use, the
motor identification provides the same parameters as previously identified with the motor
itself.

In addition to the relationship between applied voltage and motor position, the secondary
relationship related to the new module is the dynamics of the ball with respect to the beam
elevation angle. Given the approximately proportional relationship between motor output
angle, the equation of motion is represented by Eq. (21) or as a transfer function by:

P (s)

Θ(s)
=

c

s2
(34)

The multiplication of transfer functions in Eq. (33) and Eq. (34) determine the overarching
model and the identified parameters can be applied equivalently to the state-space equations.

2.3 System Identification Methods

2.3.1 Time Domain

A step response is a time domain method for system identification, specifically for low-order
systems. For second-order systems, several parameters can be obtained from the step
response: rise time (tr), settling time (ts), overshoot (OS), natural frequency (wn), damping
ratio (ζ) and the steady state value (yss). The steady state value is related to the DC-gain
of a system and can be used to quickly determine relationships between parameters. Rise
time can be related to the natural frequency of the system such that tr ≈ 1.8/wn, and
overshoot relates to the damping ratio such that OS = exp(−πζ/

√
1− ζ2). For this lab, the

step response technique is used to model the dynamics of an unstable system over a short
time-scale. The ball rolling down the beam is an unstable relationship, the position of the
ball grows exponentially.

8

Based on the results from the previous Lab Notebook, the frequency domain presents
more reliable results than the time domain; the Bode plots within the frequency domain
provide a closer look at the experimental magnitudes across different frequency, which
facilitates more precise match-ups across the theoretical and experimental data. Thus, the
frequency domain is utilized for system identification purposes of the motor; however, the
time domain is used to compare the rise times, overshoots, and steady state error with
different values of the controller inputs.

2.3.2 Frequency Domain

The alternative system identification method, better suited for complex systems, is through
the frequency domain. Assuming the system is a linear time-invariant (LTI) system, the
frequency of an input signal is equivalent to the frequency of the output from the system.
Additionally, by using the superposition principle associated with linear systems, these
frequencies can be analyzed individually and summed together. In essence, this method
can be utilized by creating a multi-sine input signal and determining the output frequencies
and magnitudes.

Two parameters determine the resolution and maximum frequency that can be identified
from an experiment: the sampling period (∆t) and experiment time (T). Sampling period
determines the Nyquist frequency, or the maximum frequency content that can be identified
from a signal. This limitation is due to aliasing; the signal frequency can only be reconstructed
if the rate of sampling is twice the maximum frequency of the signal. If sampled less than
the Nyquist frequency, the signal appears to have lower frequency content. On the opposite
end, the experiment time T determines the frequency resolution that can be resolved during
reconstruction.

If the experiment is conducted correctly according to sampling and experiment time,
the data collected can be converted to the frequency domain via a Fourier transform. The
transfer function of the system can then be determined by taking the ratio of magnitudes
for the input and output signals. The system must reach steady state for this method to
work, otherwise the ratio will contain excessive noise due to the transient response of the
system. This is accomplished through only recording data for the last half of an experiment.
To maintain the same T , the overall length of the multi-sine input must be doubled. After
post-processing the ratio of magnitudes, the resultant plot is the Bode magnitude of the
system.

2.4 Controller Design

The efforts succeeding the ball and beam system identification involve the use of feedback
control, shown in Figure 4, to better meet the desired rise time, overshoot, and steady state
value. To ascertain optimal results, several controller designs (C) are tested to identify
various advantages and disadvantages for the system. The controllers considered include the
following: PID controller, LQR controller, and LQI controller.

Figure 4 illustrates the general feedback loop, applicable to both the pendulum and the
ball and beam systems. The reference input, Vin, is the desired input of the system, which
defaults to 1V for most controller experiments of the lab. In general, the objective of the

9

ball and beam system is to reject disturbances and center the ball on the beam. The system
output, P (s), represents the position of the ball along the beam as defined in Figure 3. The
goal for the pendulum is to reach the desired angle, Θ(s).

C(s) G(s)
P (s) or Θ(s)

−
Vin(s)

d

n

Figure 4: General closed-loop feedback system. In this instance, R(s) represents the
input voltage, which is set to 1V for comparative studies. C(s) is the controller design
of the feedback system, explained further in proceeding subsections. G(s) is the ball and
beam or pendulum transfer function with input U(s), and output ball position P (s) or
pendulum angle Θ(s). Note: Vin represents the reference input voltage, analogous to
reference position/angle, and not the input voltage of the Quanser motor.

2.4.1 PID Controller

A PID controller is a widely used control law that provides the benefits of PD control while
also introducing an integrator to drive steady state error to zero. By tuning the controller
with the three gains KP , KD, and KI , a desired overshoot, rise time, and steady state value
can be achieved. The controller has the form of Eq. (35), and has a DC gain of 1 from
reference to output in closed loop.

C(s) = KP +KDs+
KI

s
(35)

2.4.2 LQR Controller

A linear-quadratic regulator (LQR) controller implements the theory of optimal control law.
It implements a cost function and seeks to minimize the resultant cost, which provides
controller designers the opportunity to weigh various feedback loop parameters more or less
than others. The LQR controller is represented according to the pendulum’s state space
form shown in Eq. (8). This type of controller is especially useful when PID control is
difficult/infeasible to use or when the state vector is greater than size 2x1.

To commence this optimization technique, the designer must first define continuous-time
cost function parameters in state space form, shown in Eq. (36).

Jc =

∫ ∞
0

[(x− xr)TQ(x− xr) + (u− ur)tR(u− ur)]dt (36)

where x is the state vector of a feedback loop and u is the plant input. Vectors xr and ur
represent the desired reference outputs of the feedback loop. Square matrix Q with size NxN

10

is the weight matrix associated with state vector x of size Nx1. Square matrix R of size
MxM and is the weight matrix associated with M plant inputs u.

For the pendulum problem, Q is a 2x2 matrix, where Q1,1 places weight on θ and Q2,2

places weight on θ̇. Similarly, R is a scalar weight parameter that impacts the single plant
input, u. For the ball and beam problem, Q is a 4x4 matrix, where Q1,1 places weight on p,
Q2,2 places weight on ṗ, Q3,3 places weight on θ, and Q2,2 places weight on θ̇.

MATLAB function, lqr, is used to find appropriate K values associated with the values
for state space vector, x. In the pendulum instance, the output of lqr is analogous to
K = [KP , KD], though the same is not for the ball and beam module.

The sensitivities of these weights are assessed further in the Implementation section,
however general rule of thumb suggests that increasing weight parameters of Q or R prioritizes
the effort for state elements to reach their corresponding references system, so as to minimize
cost function, Jc.

2.4.3 LQI Controller

The linear-quadratic integrator (LQI) controller is similar to the LQR filter but with an
added integrator control law, as shown in Figure 5.

Figure 5: LQI diagram from MATLAB function, lqi, documentation. This diagram
illustrates how one can implement the output of the function, K to a Simulink model.

The only differences in form between LQR and LQI for the pendulum application is that
the Q matrix is of size 3x3 instead of 2x2, and the output K is a 3x1 vector instead of
2x1. Q3,3 is the weight parameter that affects the emphasis for error, e, shown in Figure 5.
Additionally, the output of MATLAB’s lqi function is K = [KP , KD, KI] for the pendulum
application. The ball and beam module is not assessed using an LQI filter due to the inability
to reach this point prior to the in-person lab shutting down.

3 Implementation
The frequency method validated in the previous Lab Notebooks is used on the motor system
to identify a second-order model for the voltage-theta relationship. The setup is in open
loop for the determining the parameters τ and K from Eq. (33). In addition to the motor
dynamics, the ball and beam model parameters is identified while attached to the motor.

11

Figure 6: The experimental step response to the unstable ball beam system. The trend
is as expected for a double integrator, where position exponentially grows with respect to
time. The fit corresponds to a coefficient of c= -1.059.

The identification will use a step response via the motors output shaft angle to determine
the acceleration profile of the ball, thereby evaluating the parameters from Eq. (34). Once
the experimental models of the system are determined, the controllers described in the
proceeding sections are implemented through Simulink.

3.1 System Identification

3.1.1 Ball and Beam

The ball and beam module is interesting because the ball accelerates down the beam when
disturbed by a beam angle, inherently being an unstable system. This can be seen by taking
the inverse Laplace transform of Eq, (34) multiplied with a step input (1/s),

p(t) = ct2 (37)

The coefficient c is negative, such that the profile of the ball position with respect to time
is a negative quadratic. To take advantage of this, the motor system is placed in negative
feedback to allow for a reference. In open loop, a step input would continually increase the
angular position θ; however, in closed loop the step response is with respect to a reference
angular position. The response is recorded until the ball collides with the stop. Afterwards, a
quadratic can be fit to the experimental data thereby providing the value of c. It is important
to note that the signal data spans approximately (-5,5) volts, suggesting the fit is required
to include an offset. This is only to adjust the start position of the fitting function and is
unrelated to the dynamics of the ball and beam system.

The experimental data of the ball beam and the associated fit can be seen in Figure 6.

12

Figure 7: Experimental Bode plot of motor system with estimated pole at 47.6 and DC
gain of 1.421, verifying the additional force that the beam exerts on the motor is negligible.

where the parameter c corresponding to the relationship between motor shaft angle and
ball position is measured to be -1.059.

3.1.2 Motor Dynamics

To determine the characteristics of the motor system and verify that the parameters identified
in the first Lab Notebook remain the same, a multi-sine input is used to produce frequencies
up to approximately 50 rad/s to collect points along the magnitude Bode plot. The ball
and beam module is attached to the motor shaft by a lever arm with the ball removed from
the system. Using the theoretical model described by the transfer function in Eq. (33), the
experimental data collected is used to determine the pole location 1/τ .

The experimental Bode plot of the motor system with the estimated model are shown
in Figure 7. The experiment time is run for 40 seconds, while data is collected for the last
20 seconds (T = 20 s) to remove the effect of the transient response on the reconstructed
signal. The sampling rate for the Quanser hardware is fixed at ∆t = 2 ms. Based off this
information, the frequency range of the multi-sine is at harmonics of the sampling frequency
given by 2π/T , up to twice the Nyquist frequency given by π/∆t. From the plot, it is
estimated that the pole of the system occurs at p = 47.6, giving a time constant parameter
τ = 0.021. An approximation of the DC gain is 1.421. The resultant system is identified
to have a transfer function of the form in Eq. (33) with values of [0.021, 1.421] for [τ,K]
respectively.

13

3.2 Controller Design

With the system identified, it is necessary to define closed loop performance requirements
in order to implement a control law. Due to the ball beam module being a fourth order
system, it is unlikely to directly correlate metrics such as rise time, settling time and percent
overshoot. Additionally, a root locus approach to the controller design is difficult due to
number of poles. Placing additional poles and zeros have a direct effect on the closed loop
pole locations of the system. Using proportional control or otherwise, the control law is
complex. Instead, the state space approach and state feedback is used to ensure stability
and approximate performance. In particular, we can determine the desired location of the
closed loop poles and design a state feedback controller to satisfy those requirements. The
control law can then be simulated and verify the controller is not saturated to be implemented
on the system. For the analysis of the ball and beam, the reference input (vin) and the system
output are set to 0 V to place the ball in the center of the beam.

3.3 State Feedback Implementation

3.3.1 Ball and Beam

In order to implement this experiment in state feedback, the block diagrams are adjusted to
compensate for MIMO systems. In the case of the ball and beam, the states described in Eq.
(31) are the ball position along the beam, the linear velocity of the ball, motor shaft angular
position, and angular velocity of the motor shaft, as shown in Eq. (31). In simulation, this is
implemented through the use of MATLAB functions to describe the dynamics of the model,
and construct the controller output at each time step. The Simulink is shown in the Figure
8 using this functionality. In the case of the ball beam module, the state feedback gains
are difficult to calculate analytically, and are computed by the MATLAB command place
for MIMO systems to determine the position of the closed loop poles. The operation solves
for the eigenvalues of the matrix A − BK where the matrix K corresponds to the gain. In
practice, this is used to determine the K matrix, however for a PID controller, the values have
significance. The gains can correspond to the values of KP and KD, and then is iterated to
determine the value for the integral gain. The results are effectively the same as calculating
analytically for lower-order systems, but the state feedback approach can be used for more
complex systems.

The ball and beam system is a higher order system, fourth order. As previously mentioned,
the derivation of pole locations from performance constraints does not have simple estimations
as are relevant for first or second order systems. However, in an attempt to determine the
desired closed loop poles, the approximate speed of the response of the system can be set and
the roots to a polynomial representing a general fourth order system is used as the desired
closed loop locations, shown in Eq. (38).

d4 = s4 + 2.1wns
33.4w2

ns
2 + 2.7w3

nsw
4
n (38)

Theoretically, the step response does not saturate the controller for an wn of 3.5 and
contains minor oscillations as seen in Figure 9.

14

Figure 8: Simulink block utilizing state feedback of the Quarc’s sensor measurements.
The control law implemented in this case does not have significant intuition but places
the closed loop poles of the system at their desired locations of (−1.4839 + 4.4205i),and
(−2.1911 + 1.4495i) with multiplicity of two.

Figure 9: The theoretical step response of the system in state feedback with using the
closed loop pole locations derived from Eq. (38) and a derivative filter Eq. (32) with ωo of
100.

15

Additionally, in order to properly implement the state feedback with all of the states a
state estimate is needed for the linear velocity of the ball. As mentioned in the theoretical
section, the derivative filter is implemented of the form 32 with an ωo of 100 rad/s. The
z-transform of the transfer function is taken to convert the theoretical controller into an
implementable digital version. When the gain matrixK and the derivative filter are implemented,
the response exceeds the small angle approximations baked into the formulation of the system
parameters and produces motor angles exceeding 3 radians or half of a revolution. In general,
the control law is adequate and stabilized the system theoretically, but the performance is
limited by explicitly determining the locations of the closed loop poles. Unsurprisingly, the
system does not perform as expected due to the large variations in motor angle.

3.4 LQR Control

3.4.1 Analyzing Sensitivity of Parameters

The first step in implementing the LQR filter is first to assess and understand the sensitivities
of Q1,1, Q2,2, and R. Figures 10 – 12 demonstrate the sensitivities of each parameter for the
pendulum setup. In each respective figure, the other parameters are set equal to 1.

Figure 10 demonstrates the impact of Q1,1 on the both u(t) and y(t). As can be seen,
an increased emphasis of this parameter results in quicker rise times, which makes sense
because the error of θ is a larger priority for the pendulum system. If the emphasis of Q1,1

is far greater than Q2,2 and R, however, u(t) starts to exceed Quanser’s saturation voltage
of 10V. Thus, based off this analysis alone, it’s important to maximize the weight of Q1,1 to
ensure speedy rise times.

Figure 10: Sensitivity analysis for Q1,1. As can be seen the y(t) plot, an increase in
Q1,1 results in a quicker rise time, however the u(t) plot demonstrates an increase in input
voltage.

16

When observing the impact of increasing Q2,2, one can see that increasing this parameter
results in a quicker steady state angular velocity; though this may result in high steady state
error of the pendulum’s angle since the velocity settles quicker with no overshoot to achieve
the desired angle. This proves, however, increasing Q2,2 results in decreasing settling time
of the angular velocity, which makes sense because Q2,2 is associated with reducing the error
in θ̇.

Figure 11: Sensitivity analysis for Q2,2. Since Q2,2 is associated with KD, increasing it
results in quicker steady state error for the pendulum’s angle, though potentially not at the
desired reference of 1.

Observing the effects of increasing R, one can see that an increased R results in the
reduced steady state value of u(t), while the rise times for each u(t) plot is identical. In this
analysis, we can conclude that the system is stable when R ≥ 0.1 when Q1,1 = Q2,2 = 1.

17

Figure 12: Sensitivity analysis for R. As can be seen in the u(t) plot, increasing R results
in a lower steady state input voltage.

An additional observation to note for this analysis is the magnitudes of Q1,1, Q2,2, and
R are relative to each other. That is, if Q1,1 = Q2,2 = R for any magnitude, the results is
the same. Thus, it’s important to prioritize which parameters are most important. In this
analysis, Q1,1 is the priority.

3.5 Optimal LQR Parameters

3.5.1 Pendulum

After running several simulation on MATLAB with different weights, the final selected
magnitudes are Q1,1 = 100, Q2,2 = 0.01, and R = 1. Thus, the utmost priority to settle
quickly is θ, which is weighted at two magnitudes greater than R, the second most prioritized
parameter. Based on Figures 10 – 12, the order of these priorities makes sense since Q1,1

achieved minimal steady state error and rise times, and relatively higher R values maintain
stability.

These parameters yield KP and KD values of 9.1168 and 0.343, respectively, and also
results in a step response with a peak u(t) of 9.896V, a rise time of 0.137 seconds, and a
1-radian steady state value with no overshoot. In fact, no overshoot is exhibited using any
of the tested weight parameters. This is attributed to the setup of this cost function, specific
to the step input.

The final experimental results are a steady state of 0.987 radians and a rise time of
0.137 seconds, which is remarkably close to the simulated expectations. These results are
the optimal results for reducing the rise time without saturating the input voltage. Further
efforts to improve rise time / controller design are thus considered for the pendulum setup
using an LQI filter instead because of its ability to allow overshoot.

18

Figure 13: Experimental vs. theoretical data for selected LQR filter. The experimental
steady state value is 0.987 radians and a rise time of 0.137 seconds, which are identical to
the simulated test.

3.5.2 Ball and Beam

The ball and beam system is not successful with state feedback using defined closed loop
pole placement. One method of accomplishing better performance is through the use of
LQR, which is more suitable because the controller optimizes the control structure based
on different weighting. For the ball and beam system, this is implemented by weighting the
error with respect to ball position the highest. The value corresponding to this is Q1,1 which
is set to 100 based off the error weight of 0.05. The rest of the weights are adjusted to avoid
saturation and maintain stability. To test the controller, the system was subject to a pulsed
reference of ±2V at a period of 15 seconds with a 50% duty cycle. The result is a waveform
that varies changes position every 7.5 seconds and holds the position for the same amount
of time.

As seen in Figure 14, the experimental response mimics the theoretical response closely
but does not exhibit the same overshoot as is seen in the theoretical. A possible explanation
for the error may be due to the signal noise of the sensor, when acquiring the data for
system identification the results fluctuated significantly. Another reason may be due to
additional friction or momentum of the ball rolling down the ramp or deviation from the
linear approximation about the equilibrium position of the beam.

3.6 LQI Filter for Pendulum

An additional sensitivity analysis is conducted to decide upon a Q3,3 value for the LQI filter.
For this analysis, the selected values of Q1,1, Q2,2 that are used for the pendulum’s LQR
filter are implemented for proper Q3,3 selection. As shown in Figure 15, lower Q3,3 values

19

Figure 14: An LQR controller for tracking a pulsed wave at a frequency of 15 seconds.
The parameters for the controller are Q1,1 = 400, Q2,2 = 1, Q3,3 = 0.01, Q4,4 = 0.01, with
R = 100.

are not sufficient for further reducing the rise time or settling time. A Q3,3 selection also
exceeds the input saturation voltage, leaving the selection of Q3,3 = 100.

Using the above weight parameters, the output of MATLAB function lqi is K =
[KP , KD, KI] = [10.1, 0.377,−10], which theoretically yields a 1-radian steady state value, a
rise time of 0.1574 seconds, and an overshoot of 1.54%.

When testing these parameters experimental, the experimental demonstrate identical
behavior to that of the simulated run, as seen in Figure 16. The experimental steady state
value is 1.0017 radians, which is the closest encoder output to 1 radian. The experimental
overshoot is 0.5% and the rise time is 0.1384 seconds, which are both less than the theoretical
outcomes. Though the rise times are not improved through LQI implementation, it’s important
to recall that the LQI filter presents advantages in control law if the system is not known.

20

Figure 15: Sensitivity analysis for Q3,3. Both a Q3,3 of 100 and 1000 present similar rise
times, however the 1000 weight exceeds the input voltage and also present more overshoot.
Thus a Q3,3 of 100 is selected.

Figure 16: The step response of the pendulum system with an LQI controller to mitigate
overshoot and eliminate steady-state error.

21

3.6.1 Using LQI Filter for Tracking a Sine Wave

The final observation is to assess whether the LQI filter is sufficient for tracking a sine wave
with the pendulum system. Incidentally, the best tracking for a sine wave of 1 rad/s are
with the PID values used for the step input. Figure 17 demonstrates the similarity; the
experimental data portrays a slight phase delay, however we consider the tracking abilities
sufficient for the sine wave reference

Figure 17: The use of an LQI filter for tracking a sine wave. A slight phase delay between
the experimental and theoretical data is notable, however it is sufficiently small in this
application.

4 Conclusion
In this notebook, the theoretical model of the system is derived based on electro-mechanical
equations of motion for a dc motor and the Lagrangian of the ball and beam module. In
series, the two sub-system transfer functions describe the overarching behavior of the module.
The parameters of the motor system are identified through a multi-sine input to the system
and the resulting magnitudes of the output frequencies. This is done assuming linearity
and time invariance such that the superposition principle holds. The experimental Bode
plot is used to estimate the pole location of the system and the DC gain. The behavior of
the ball and beam is modelled using a step response due to the unstable behavior of a ball
moving along on an inclined plane. The response to a step input of the motor shaft angle
produces a negative quadratic response that is fit to a modelling coefficient, shown in Eq.
(38). Converting the coefficients of the transfer system’s to a general form allows for an
additional representation in state space to perform state feedback. The preceding methods
of identification produce an estimated DC term of K = 1.421 with a poles located at 47.6

22

rad/s for the motor model. The ball and beam is identified to have a coefficient of –1.059
describing the relationship between motor shaft angle θ and ball position along the beam p.

In addition to identifying the model of the system, a large component of the lab is focused
on controller design. Of the various controllers considered in this lab, PID and root locus
methods of design were considered infeasible since the ball and beam module is a fourth-order
system. State feedback is implemented using an approximation for placing closed loop poles
based on the desired speed of the system. The results produce motor shaft angles exceeding
half a revolution, violating the small angle approximations made to construct the model of
the overall system. In theory, however, the performance is acceptable and the derivative
filter designed with a cutoff ωo of 10 rad/s reasonably estimated the linear velocity of the
ball ṗ. The more applicable controllers that were successfully implemented were using LQR
and LQI control. In the case of the pendulum system, both the LQR and LQI systems
produced positive results that mimic the intended simulations; both experimental outcomes
exhibit quicker rise times than the theoretical as well. Though the LQI filter experiments
demonstrates a slower rise time than the LQR one, the steady state error is closer with LQI
by a slim margin. For this reason, and the fact that the LQI filter can account for systems
that may be difficult to identify, the LQI filter is considered a more appropriate filter for this
application if we omit gravity compensation from the pendulum.

The ball and beam system is tuned using LQR to provide improved performance over
the direct pole placement method using a static controller gain matrix K. With the use of
LQR the system is stable and performed similar to theoretical simulations. When developing
the controller, the state estimate of ṗ was observed to have large error upon the beginning
of the experiment. This is remedied by bounding the output to ±2 (rad/s). Any estimate
greater or less than the bounds saturates, resulting in a more accurate value of ṗ to be
used in state feedback. The implemented controller does not exhibit the overshoot of the
theoretical model, likely due to deviation from linear approximations or more likely sensor
noise. In future controller designs for the ball and beam, the sensor measurements for ball
position along the beam can be passed through a low-pass filter before being introduced to
the derivative filter for estimating linear velocity of the ball. A more advanced control law
such as LQI can also be implemented and provide more favorable results with respect to
rise-time.

23

5 Appendix II: MATLAB Code

1 %% I n i t i a l i z e Ba l l Beam
2 c l o s e a l l ; c l e a r a l l ; c l c ;
3

4 %% Experiment De f i n i t i o n
5 % Def ine Parameters
6 dt = 0 . 0 0 2 ; % Sampling time
7 T = 20 ; % Time o f experiment
8 N = 150 ; % Number o f s i n e waves
9 A = 30 / N;

10 i = (1 :N) ’ ;
11 w = 2∗ pi /T∗ i ; % Frequency
12 phi = 2∗ pi ∗ rand (1 ,N) ’ ; % Random Phase
13

14 % Check input
15 dt = 0 . 0 0 2 ;
16 t_f = 2∗T−dt ;
17 t = 0 : dt : t_f ;
18

19 % Create input mu l t i s i n e
20 u = A∗ s i n (w∗ t+phi) ;
21 u = sum(u) ;
22

23 % Ver i fy bounded between (−10 ,10) otherwi s e re−i t e r a t e
24 whi le a l l (u <= −10 & u >= 10)
25 phi = 2∗ pi ∗ rand (1 ,N) ’ ; % Random Noise
26 u = A∗ s i n (w∗ t+phi) ;
27 u = sum(u) ;
28 end
29

30 % f i g u r e () , p l o t (t , u)

1 %% Load exper imenta l data
2 load motor_id_bb .mat ;
3 theta = exp_model . theta ;
4 theta_dot = exp_model . theta_dot ;
5 p = exp_model . p ;
6 u = exp_model . u ;
7 t = exp_model . t ;
8 %% Theo r e t i c a l Parameters
9

10 % Frequenc ie s o f f f t
11 w_nyq = pi /dt ;
12 w_res = 2∗ pi /T;

24

13 w_plot = (0 : w_res :2∗w_nyq−w_res) ’ ;
14

15 K = 1 . 4 2 1 ;
16 tau = 0 . 0 2 1 ;
17

18 num = K;
19 den = [tau 1 0] ;
20

21 % Obtain d i s c r e t e bode p l o t o f t r a n s f e r func t i on
22 G = t f (num, den) ;
23 [mag , phase] = bode (G, w_plot) ;
24 mag = squeeze (mag) ;
25 phase = squeeze (phase) ;
26

27

28 %% Post Proce s s ing Sc r i p t
29 o f f s e t = 0 . 0220 ; % Rest ing vo l tage
30 y = theta ;
31 t = (0 : dt :T−dt) ’ ;
32

33 % Plot input and output
34 f i g u r e
35 subplot (2 , 1 , 1)
36 p lo t (t , u) ;
37 subplot (2 , 1 , 2)
38 p lo t (t , y) ;
39

40 % Four ie r Transform
41 U = f f t (u) ; % Frequenc ie s o f input s i g n a l
42 Y = f f t (y) ; % Frequenc ie s o f output s i g n a l
43 f i gu r e ,
44 subplot (2 , 1 , 1)
45 stem (w_plot , abs (Y)) ; % Create subplot o f f f t Y
46 xlim ([0 w_plot (end)]) ;
47 subplot (2 , 1 , 2)
48 stem (w_plot , abs (U)) ; % Create subplot o f f f t U
49 xlim ([0 w_plot (end)]) ;
50

51 % Trans fe r Function
52 H = Y./U; % Output/ Input
53 H(abs (U) < 1e−3) = 0 ; % Remove no i s e in input s i g n a l
54

55 % Overlay t h e o r e t i c a l and exper imenta l
56 f i gu r e ,
57 semi logx (w_plot , db (abs (H)) , ’ LineWidth ’ , 2) ; % Experimental

25

58 hold on
59 semi logx (w_plot , db (abs (mag)) , ’ r ’ , ’ LineWidth ’ , 2) ; % Theo r e t i c a l
60 l egend (’ Theo r e t i c a l ’ , ’ Experimental ’)

1 %% Step i d e n t i f i c a t i o n b a l l beam
2 c l e a r a l l ; c l o s e a l l ; c l c ;
3

4 % Load data
5 load ball_id_bb .mat
6 AVG = 400 ;
7 BOUNDS = [1 . 7 281 4 . 5 8 5 3] ;
8 % BOUNDS = [] ;
9 funct = @(c , t) c (1) ∗ t .^2 + c (2) ;

10 tf_model = @(c) t f (c , [1 0 0]) ;
11

12 % Plot exper imenta l data
13 i f isempty (BOUNDS)
14 f i gu r e , p l o t (time , p) ;
15 u iwa i t (msgbox (’ S e l e c t an x−value from which to crop ’ , ’modal ’)) ;
16 [BOUNDS, ~] = ginput (2) ; % user s e l e c t an x−value from which to crop .
17 end
18

19 % F i l t e r data
20 l o c = time>BOUNDS(1)&time<BOUNDS(2) ;
21 t_data = time (l o c)−time (f i nd (loc , 1)) ;
22 p_data = p(l o c) ;
23 p_f i l t = smooth (p_data ,AVG) ;
24

25 % Fit data and c r ea t e model
26 % NOTE: The o f f s e t c o e f f i c i e n t w i l l be ignored because the i d e a l p o s i t i o n
27 % i s the cent e r o f the beam where the s enso r reads zero .
28 c o e f f = n l i n f i t (t_data , p_f i l t , funct , [−2 , 4 . 2]) ;
29 exp_model = tf_model (c o e f f (1)) ;
30

31 % Plot Resu l t s
32 f i gu r e , hold on
33 plot_prop . LineWidth = 1 . 5 ;
34 p lo t (t_data , p_f i l t , plot_prop)
35 p lo t (t_data , funct (c o e f f , t_data) , plot_prop)
36 x l ab e l (’Time (s) ’)
37 y l ab e l (’ Amplitude ’)
38 l egend (’Data ’ , ’ F i t ’)

1 %% Bal l Beam Cont r o l l e r Design
2 % c l e a r a l l ; c l o s e a l l ; c l c ;

26

3

4 dt = 0 . 0 0 2 ;
5 T = 20 ;
6

7 % Theo r e t i c a l model
8 c = −1.0588;
9 K = 1 . 4 2 1 ;

10 tau = 0 . 0 2 1 ;
11 ball_model = t f (c , [1 0 0]) ; % Bal l c on t r i bu t i on
12 motor_model = t f (K, [tau 1 0]) ; % Motor con t r i bu t i on
13 bb_model = ball_model∗motor_model ; % System model
14

15 % Root l o cu s i n f e a s i b l e (p ropo r t i ona l or o therw i s e)
16 %% State Space
17 A = [0 1 0 0 ; 0 0 c 0 ; 0 0 0 1 ; 0 0 0 −1/tau] ;
18 B = [0 ; 0 ; 0 ;K/tau] ;
19 % C = [1 0 0 0 ; 0 0 1 0 ; 0 0 0 1] ;
20 C = [1 0 0 0] ;
21 D = 0 ;
22 bb_ss_model = s s (A,B,C,D) ; % State Space Model
23 w_n = 3 . 5 ;
24 t e s t = roo t s ([1 2 .1∗w_n 3.4∗w_n^2 2 .7∗w_n^3 w_n^4]) ;
25

26 % State Feedback
27 K_c = place (A,B, t e s t) ;
28

29 % Need es t imator f o r v e l o c i t y o f b a l l − Der iva t ive f i l t e r
30 s = t f (’ s ’) ;
31 w_0 = 100 ;
32 f i l t_d e r i v = s /((s /w_0 + 1) ^2) ;
33 f i l t_de r i v_z = c2d (f i l t_de r i v , dt) ;
34 num = f i l t_de r i v_z . Numerator {1} ;
35 den = f i l t_de r i v_z . Denominator {1} ;
36

37 % Did not implement − wierd theta
38

39 %% LQR
40 c l o s e a l l ;
41 r_0 = 0 ; % I n i t i a l Condit ion
42 error_p = 0 . 0 5 ;
43 error_dp= 1 ;
44 error_th = 10 ;
45 error_dth = 10 ;
46 error_u = . 1 ;
47 Q11 = 1/(error_p^2) ;

27

48 Q22 = 1/(error_dp^2) ;
49 Q33 = 1/(error_th ^2) ;
50 Q44 = 1/(error_dth ^2) ;
51 Q = diag ([Q11 ,Q22 ,Q33 ,Q44]) ;
52 R = 1/(error_u^2) ;
53

54 [K_c, S ,CLP] = l q r (A,B,Q,R) ;
55 sim Con t r o l l e r s \StepBlock_lqr_bb
56

57 % run saveModelData .m
58

59 f i gu r e ,
60 subplot (3 , 1 , 1)
61 p lo t (t , u) ;
62 t i t l e ("Q1 = " + num2str (Q11) + " , Q2 = " + num2str (Q22) + " , R = " + num2str (R)) ;
63 y l ab e l (’u ’)
64 subplot (3 , 1 , 2)
65 p lo t (t , x (: , 1)) ;
66 y l ab e l (’p ’)
67 subplot (3 , 1 , 3)
68 p lo t (t , x (: , 2)) ;
69 y l ab e l (’ \dot{p} ’ , ’ i n t e r p r e t e r ’ , ’ l a t e x ’)
70

71

72 r t = r i s e t ime (x (: , 1) , t)
73

74 %% LQI
75

76 c l o s e a l l ;
77 r_0 = 0 ; % I n i t i a l Condit ion
78 error_p = 0 . 0 5 ;
79 error_dp= 1 ;
80 error_th = 10 ;
81 error_dth = 10 ;
82 error_u = . 1 ;
83 error_e = 0 . 1 ;
84 Q11 = 1/(error_p^2) ;
85 Q22 = 1/(error_dp^2) ;
86 Q33 = 1/(error_th ^2) ;
87 Q44 = 1/(error_dth ^2) ;
88 Q55 = 1/(error_e ^2) ;
89 Q = diag ([Q11 ,Q22 ,Q33 ,Q44 ,Q55]) ;
90 R = 1/(error_u^2) ;
91

92 [K_c, S ,CLP] = l q i (bb_ss_model ,Q,R) ;

28

93 sim Con t r o l l e r s \StepBlock_lqi_bb
94

95 % run saveModelData .m
96

97 f i gu r e ,
98 subplot (3 , 1 , 1)
99 p lo t (t , u) ;

100 t i t l e ("Q1 = " + num2str (Q11) + " , Q2 = " + num2str (Q22) + " , R = " + num2str (R)) ;
101 y l ab e l (’u ’)
102 subplot (3 , 1 , 2)
103 p lo t (t , x (: , 1)) ;
104 y l ab e l (’p ’)
105 subplot (3 , 1 , 3)
106 p lo t (t , x (: , 2)) ;
107 y l ab e l (’ \dot{p} ’ , ’ i n t e r p r e t e r ’ , ’ l a t e x ’)
108

109

110 r t = r i s e t ime (x (: , 1) , t)

1 %% Lab 03
2 % Document each day as a s e c t i o n in the s c r i p t
3 %% Pendulum System
4 % Performance Requirements
5 OS = 0 . 0 5 ;
6 t_r = 0 . 1 0 ;
7 w_n = 1.8 / t_r ;
8 zeta = sq r t (l og (OS)^2 / (p i ^2 + log (OS) ^2)) ;
9

10 % Estimates based on exper imenta l i d e n t i f i c a t i o n (Pendulum)
11 p = [1 . 5 , 2 0] ;
12 temp = conv ([1 p (1)] , [1 p (2)]) ;
13 a = temp (3) ; % c
14 b = temp (2) ; % −−−−−−−−−−−−−
15 c = 1.08 ∗ a ; % s^2 + bs + a
16

17 % Determine c o n t r o l l e r ga ins − based on performance (2nd order approx .)
18 K_P = w_n^2;
19 K_D = 2 ∗ zeta ∗ w_n − b ;
20

21 % Formulate system matr i ce s
22 A = [0 1 ; −a −b] ;
23 B = [0 c] ’ ;
24 K = place (A,B,P) ;
25

26 % Tune i n t e g r a l ga in

29

27 K_I = 200/ c ;
28

29 % Run experiment setup
30 % run i n i t i a l i z e _ s s .m;
31

32 %% 02−25−2020
33 % Design t e s t with LQR to see how parameters vary performance
34 Q = eye (2) ;
35 R = 1 ;
36

37 [K, S ,CLP] = l q r (A,B,Q,R) ; % Not e x p l i c i t l y choos ing CLP
38 K_place = p lace (A,B,CLP) ; % Exp l i c i t CLP
39

40 %% Vary R
41 c l o s e a l l ;
42 w_r = logspace (−3 ,3 ,7) ;
43 Q = eye (2) ;
44 f i g u r e (1)
45 f i g u r e (2)
46 f o r i = 1 : l ength (w_r)
47 R = w_r(i) ;
48 [K, S ,CLP] = l q r (A,B,Q,R) ;
49 sim StepBlock_PID_place
50 run saveTheoData .m
51 f i g u r e (1) , hold on
52 p lo t (time , u , ’ DisplayName ’ ,"R = " + num2str (R))
53 f i g u r e (2) , hold on
54 p lo t (time , theta , ’ DisplayName ’ ,"R = " + num2str (R))
55 end
56 f i g u r e (1)
57 l egend (’ show ’)
58 xlim ([0 2])
59 t i t l e (’u (t) ’)
60

61 f i g u r e (2)
62 l egend (’ show ’)
63 xlim ([0 8])
64 t i t l e (’ y (t) ’)
65 %% Vary Q s imul taneous ly
66 c l o s e a l l ;
67 R = 1 ;
68 w_q = logspace (−3 ,3 ,7) ;
69 f i g u r e (1)
70 f i g u r e (2)
71 f o r i = 1 : l ength (w_q)

30

72 Q = w_q(i)∗ eye (2) ;
73 di sp (Q)
74 [K, S ,CLP] = l q r (A,B,Q,R) ;
75 sim StepBlock_PID_place
76 run saveTheoData .m
77 f i g u r e (1) , hold on
78 p lo t (time , u , ’ DisplayName ’ ,"w_q = " + num2str (w_q(i)))
79 f i g u r e (2) , hold on
80 p lo t (time , theta , ’ DisplayName ’ ,"w_q = " + num2str (w_q(i)))
81 end
82 f i g u r e (1)
83 l egend (’ show ’)
84 xlim ([0 2])
85 t i t l e (’u (t) ’)
86 f i g u r e (2)
87 l egend (’ show ’)
88 xlim ([0 8])
89 t i t l e (’ y (t) ’)
90

91 %% Vary Q i nd i v i d u a l l y Q1 − e r r o r term
92

93 c l o s e a l l ;
94 R = 1 ;
95 w_q = logspace (−3 ,3 ,7) ;
96 f i g u r e (1)
97 f i g u r e (2)
98 f o r i = 1 : l ength (w_q)
99 Q = diag ([w_q(i) , 1]) ;

100 di sp (Q)
101 [K, S ,CLP] = l q r (A,B,Q,R) ;
102 sim StepBlock_PID_place
103 run saveTheoData .m
104 f i g u r e (1) , hold on
105 p lo t (time , u , ’ DisplayName ’ ,"w_q = " + num2str (w_q(i)))
106 f i g u r e (2) , hold on
107 p lo t (time , theta , ’ DisplayName ’ ,"w_q = " + num2str (w_q(i)))
108 end
109 f i g u r e (1)
110 l egend (’ show ’)
111 xlim ([0 2])
112 t i t l e (’u (t) ’)
113 f i g u r e (2)
114 l egend (’ show ’)
115 xlim ([0 8])
116 t i t l e (’ y (t) ’)

31

117

118 %% Vary Q i nd i v i d u a l l y Q2
119

120 c l o s e a l l ;
121 R = 1 ;
122 w_q = logspace (−3 ,3 ,7) ;
123 f i g u r e (1)
124 f i g u r e (2)
125 f o r i = 1 : l ength (w_q)
126 Q = diag ([1 , w_q(i)]) ;
127 di sp (Q)
128 [K, S ,CLP] = l q r (A,B,Q,R) ;
129 sim StepBlock_PID_place
130 run saveTheoData .m
131 f i g u r e (1) , hold on
132 p lo t (time , u , ’ DisplayName ’ ,"w_q = " + num2str (w_q(i)))
133 f i g u r e (2) , hold on
134 p lo t (time , theta , ’ DisplayName ’ ,"w_q = " + num2str (w_q(i)))
135 end
136 f i g u r e (1)
137 l egend (’ show ’)
138 xlim ([0 2])
139 t i t l e (’u (t) ’)
140 f i g u r e (2)
141 l egend (’ show ’)
142 xlim ([0 8])
143 t i t l e (’ y (t) ’)
144

145 %% 02−27−2020
146 % Implementing LQR
147 c l o s e a l l ;
148 error_pos = 0 . 1 ;
149 e r ro r_ve l = 10 ;
150 error_u = 1 ;
151 Q11 = 1/(error_pos ^2) ;
152 Q22 = 1/(er ro r_ve l ^2) ;
153 Q = diag ([Q11 ,Q22]) ;
154 R = 1/(error_u^2) ;
155

156 [K, S ,CLP] = l q r (A,B,Q,R) ;
157 sim StepBlock_PID_place
158 run saveTheoData .m
159

160 f i gu r e ,
161 subplot (3 , 1 , 1)

32

162 p lo t (time , u) ;
163 t i t l e ("Q1 = " + num2str (Q11) + " , Q2 = " + num2str (Q22) + " , R = " + num2str (R)) ;
164 l egend (’u ’)
165 subplot (3 , 1 , 2)
166 p lo t (time , v e l o c i t y) ;
167 l egend (’ v e l o c i t y ’)
168 subplot (3 , 1 , 3)
169 p lo t (time , theta) ;
170 l egend (’ theta ’)
171

172 r t = r i s e t ime (theta , time)
173

174 %% LQR Experimental vs t h e o r e t i c a l data
175 c l o s e a l l ;
176 load f i g u r e s \ l q r_se t t i ng s 0 .mat
177

178 f i gu r e ,
179 subplot (3 , 1 , 1)
180 hold on
181 p lo t (exp_lqr . time , exp_lqr . theta , ’ r ’ , ’ LineWidth ’ , 1 . 5) ;
182 p lo t (sim_lqr . time , sim_lqr . theta , ’b−− ’ , ’ LineWidth ’ , 1 . 5) ;
183 l egend (’ exp ’ , ’ sim ’)
184 y l ab e l (’ theta ’)
185

186 subplot (3 , 1 , 2)
187 hold on
188 p lo t (exp_lqr . time , exp_lqr . v e l o c i t y , ’ r ’ , ’ LineWidth ’ , 1 . 5) ;
189 p lo t (sim_lqr . time , sim_lqr . v e l o c i t y , ’b−− ’ , ’ LineWidth ’ , 1 . 5) ;
190 l egend (’ exp ’ , ’ sim ’)
191 y l ab e l (’ v e l o c i t y ’)
192

193 subplot (3 , 1 , 3)
194 hold on
195 p lo t (exp_lqr . time , exp_lqr . u , ’ r ’ , ’ LineWidth ’ , 1 . 5) ;
196 p lo t (sim_lqr . time , sim_lqr . u , ’b−− ’ , ’ LineWidth ’ , 1 . 5) ;
197 l egend (’ exp ’ , ’ sim ’)
198 y l ab e l (’u ’)
199

200 %% COMPLETE LATER! :)
201 c l o s e a l l ;
202 w_r = logspace (−3 ,3 ,7) ;
203 Q = eye (3) ;
204 f i g u r e (1)
205 f i g u r e (2)
206 f o r i = 1 : l ength (w_r)

33

207 R = w_r(i) ;
208 [K, S ,CLP] = l q r (A,B,Q,R) ;
209 sim StepBlock_PID_place
210 run saveTheoData .m
211 f i g u r e (1) , hold on
212 p lo t (time , u , ’ DisplayName ’ ,"R = " + num2str (R))
213 f i g u r e (2) , hold on
214 p lo t (time , theta , ’ DisplayName ’ ,"R = " + num2str (R))
215 end
216 f i g u r e (1)
217 l egend (’ show ’)
218 xlim ([0 2])
219 t i t l e (’u (t) ’)
220

221 f i g u r e (2)
222 l egend (’ show ’)
223 xlim ([0 8])
224 t i t l e (’ y (t) ’)
225

226 %% LQI Theo r e t i c a l
227

228 c l o s e a l l ;
229 error_pos = 0 . 1 ;
230 e r ro r_ve l = 10 ;
231 error_u = 1 ;
232 error_e = 0 . 1 ;
233 Q11 = 1/(error_pos ^2) ;
234 Q22 = 1/(er ro r_ve l ^2) ;
235 Q33 = 1/(error_e ^2) ;
236 Q = diag ([Q11 ,Q22 ,Q33]) ;
237 R = 1/(error_u^2) ;
238

239 % Def ine s tate−space system
240 C = [1 0] ;
241 D = 0 ;
242 sys1 = s s (A,B,C,D) ;
243

244 [K, S ,CLP] = l q i (sys1 ,Q,R) ;
245 sim StepBlock_PID_lqi_theoret ical
246 run saveTheoData .m
247

248 f i gu r e ,
249 subplot (3 , 1 , 1)
250 p lo t (time , u) ;
251 t i t l e ("Q1 = " + num2str (Q11) + " , Q2 = " + num2str (Q22) + " , R = " + num2str (R)) ;

34

252 l egend (’u ’)
253 subplot (3 , 1 , 2)
254 p lo t (time , v e l o c i t y) ;
255 l egend (’ v e l o c i t y ’)
256 subplot (3 , 1 , 3)
257 p lo t (time , theta) ;
258 l egend (’ theta ’)
259

260 %% LQI Experimental vs t h e o r e t i c a l data
261 c l o s e a l l ;
262 load f i g u r e s \ l q i_ s e t t i n g s 0 .mat
263

264 f i gu r e ,
265 subplot (3 , 1 , 1)
266 hold on
267 p lo t (exp_lqr . time , exp_lqr . theta , ’ r ’ , ’ LineWidth ’ , 1 . 5) ;
268 p lo t (sim_lqr . time , sim_lqr . theta , ’b−− ’ , ’ LineWidth ’ , 1 . 5) ;
269 l egend (’ exp ’ , ’ sim ’)
270 y l ab e l (’ theta ’)
271

272 subplot (3 , 1 , 2)
273 hold on
274 p lo t (exp_lqr . time , exp_lqr . v e l o c i t y , ’ r ’ , ’ LineWidth ’ , 1 . 5) ;
275 p lo t (sim_lqr . time , sim_lqr . v e l o c i t y , ’b−− ’ , ’ LineWidth ’ , 1 . 5) ;
276 l egend (’ exp ’ , ’ sim ’)
277 y l ab e l (’ v e l o c i t y ’)
278

279 subplot (3 , 1 , 3)
280 hold on
281 p lo t (exp_lqr . time , exp_lqr . u , ’ r ’ , ’ LineWidth ’ , 1 . 5) ;
282 p lo t (sim_lqr . time , sim_lqr . u , ’b−− ’ , ’ LineWidth ’ , 1 . 5) ;
283 l egend (’ exp ’ , ’ sim ’)
284 y l ab e l (’u ’)
285

286 %% LQI s t a t e feedback − r e f e r e n c e s i n e
287 w = 5 ;
288 sim S ineB lock_lq i_theo r e t i ca l
289

290 % A = [0 w; −w 0] ;
291 % B = [1 ; 0] ;
292 % C = [1 0] ;
293 % D = 0 ;

35

36

37

