
Multi-Rotor Aircraft Analysis

Riley Kenyon

December 14th, 2019

Abstract

This report describes the analysis of a multi-rotor aircraft and
the design of a state feedback system and state observer. Measures of
interest are controllability, stabilizability, observability, and detectibil-
ity.

1 Topic Discussion

1.1 Introduction

The system chosen to analyze is a multi-rotor aircraft, specifically a quad-
copter. The aircraft has four rotors that provide motion in three dimension.
Each opposing pair of rotors spin in the same direction, and adjacent rotors
spin in the opposite direction. The model derived for this quadcopter as-
sumes near level flight with the rotor’s normal all tilted towards the center of
the aircraft. This is assumed in order to have direct access to X, Y movement
without pitching the quadcopter. For simplicity, it is also assumed an inner
control loop is implemented that keeps the reference frame of the vehicle
aligned with the coordinate axes.

1.2 State Space Representation

The state variables used in the model are

x = [x ẋ y ẏ z ż] (1)

1

where the states describe the position and velocity in X, Y, Z. The four rotor
inputs can describe the force felt in each coordinate direction by

FX = δ(T3 − T1) (2)

FY = δ(T4 − T2) (3)

FZ = γ(T1 + T2 + T3 + T4) (4)

where T1 thorough T4 are the thrust produced by each rotor, and Fx, Fy,
Fz are the respective coordinate forces. Drag is considered using vertical and
horizontal coefficients (kd,lat,kd,vert) with mass m. Sensor data output is X,
Y, Z from GPS. The general state-space representation is described by

ẋ = Ax + Bu (5)

y = Cx + Du (6)

The behavior desired from this system is a steady state position given a
reference for the X,Y, and Z coordinates. This is what the GPS sensors were
selected to provide. The specific matrices in this state-space model are

A =


0 1 0 0 0 0
0 −0.0104 0 0 0 0
0 0 0 1 0 0
0 0 0 −0.0104 0 1
0 0 0 0 0 −0.0208

 (7)

B =


0 0 0 0

−0.04167 0 0.04167 0
0 0 0 0
0 −0.04167 0 0.04167
0 0 0 0

0.4 0.4 0.4 0.4

 (8)

C =

1 0 0 0 0 0
0 0 1 0 0 0
0 0 0 0 1 0

 (9)

D =

0 0 0 0
0 0 0 0
0 0 0 0

 (10)

2

λ1 0 m = 3
λ2 -0.0104 m = 2
λ3 -0.0208 m = 1

Table 1: Eigenvalues of matrix A describing the system

2 System Performance

The desired system performance is a rise time of 1 s for X, Y, and Z position-
ing. The other requirement is zero steady-state error to a step input, which
will be addressed in the state feedback controller design. Rise time can be
approximated as

tr = 1.8/ωn (11)

for a second order system. Using the performance measures to determine the
closed loop poles of the system, the values needed to satisfy the constraints
are

||λi|| > 1.8 (12)

while λi should be negative to satisfy stability. As such, it is selected to
have the pole locations of the closed loop transfer function be greater than
-3 to account for the presence of the additional poles. The current poles
of the system can be found by determining the eigenvalues of A by solving
DET (A − λI) = 0, the resulting values are found in table 1. Without a
controller in place, the system is simulated to verify the initial performance
and stability. For a step response to each individual rotor torque, the aircraft
increases in Z exponentially with either X or Y depending on input as seen
in figure 1. This makes sense, due to the rotors providing a constant force in
those directions.

3 Stability and Observability

Before designing an observer or controller, it is important to see if the system
is controllable and observable. Controllability is the strongest form of sta-
bilizability, it means that the system can be driven to any state that exists
in the space. If a system is controllable, that notion implies stabilizable. To
check for controllability, the controllability matrix is used, defined as

C = [B AB A2B ... An−1B] (13)

3

Figure 1: Step response from each individual rotor input.

for this system n = 6 and results in a 6x24 matrix of rank 6. The matrix has
full rank and this result implies that any state ~x(t) can be written as a linear
combination of the columns of C. The system is completely controllable, and
can be steered to any state by a specific input u(t). Additionally, since the
system is controllable it implies the weaker condition stabilizable. Looking at
the zero-input response and the eigenvalues from table 1, the system is known
to be ISL stable, due to the zero eigenvalues with algebraic multiplicity 3.

The other important to consider when implementing state feedback is
observability which is the dual of controllablility. Essentially observability
describes whether the time history from the system output y(t) and system
input u(t) on the interval [0, t] can the state be determined. Observability is
the stronger form of detectability where the poles of the state observer can
be placed to be stable. A test to determine observability is through the rank

4

F
ẋ = Ax + Bu
y = Cx + Du

Observer

K

r u y

x̂
−

Figure 2: Closed loop block diagram for the state space system with feedback
gain matrix K with an observer.

of the observability matrix defined as

O =



C
CA
CA2

.

.

.
CAn−1


(14)

for this system n = 6 and results in a 18x6 matrix. The observability matrix
has full column rank and implies the system is fully observable. If a system
is observable, the stronger condition of detectability, it thereby implies the
system is detectable.

4 State Feedback Controller Design

Due to the performance conditions presented in the second section, the poles
of the closed loop transfer function should be moved to locations λ = −5,
and λ = −3. This is accomplished by solving the set of equations described
by the feedback loop.

The block diagram corresponds the following set of equations.

ẋ = (A−BK)x+BFr (15)

solving for the eigenvalues in terms of the characteristic equation given by
DET (A−λI) = 0, or alternatively using the matlab command place(A,B,[poles]).
Desiring the poles found in table 2. The resulting gain matrix K is shown

5

λ1 -3 m = 3
λ2 -5 m = 3

Table 2: Desired closed loop poles

Figure 3: Pole-Zero map for closed loop system under feedback gain K. Note
the desired poles under feedback are -3 and -5.

here,

K =


−179.9856 −95.8675 0 0 9.3750 4.9870

0 0 −179.9856 −95.8675 9.3750 4.9870
179.9856 95.8675 0 0 9.3750 4.9870

0 0 179.9856 95.8675 9.3750 4.9870


(16)

To confirm the poles of the closed loop transfer function have been moved
successfully, the roots of (A-BK) are shown on a map of the complex plane
in figure 3.

6

Figure 4: The step response to a 1 meter step reference for each direction
X,Y,Z.

To determine the matrix F, equation 15 taking the Laplace transform and
solving for x yields

x = (sI − (A−BK))−1BFr (17)

By solving for F and by evaluating the expression at s = 0 gives the
matrix that will have a steady-state error of zero to a step input for position
(X,Y,Z). Because B in not a square matrix and does not have an inverse, the
psuedo-inverse is used to solve for F.

F = B∗(BB∗)−1(−(A−BK)) (18)

Now for positional reference inputs, the performance of the closed loop
transfer function is as expected, meeting the rise time and steady-state error
requirement. The rise time to a step is 0.89 seconds.

7

5 State Observer Design

As a general rule, the poles of the observer should be 10x greater than those
of the controller to process fast enough as to not add a delay into the system.
Utilizing this assumption and the fact the system is observable, the poles of
the observer are placed at -30 and -50. This operation is done in the same
fashion as for the controller. An observer of the form given by the following
equations

˙̂x = Ax̂ + Bu + L(y − ŷ) (19)

y = Cx̂ + Du (20)

using the substitution, e = x− x̂ the expression is simplified to

ė = (A− LC)e. (21)

Note that the orientation of (A-LC) is similar to (A-BK) but the places of
K and L are switched. In order to use the place command in matlab, the
knowledge that the eigenvalues of A are the same as AT , the expression can
be written as

(A− LC)T = AT − CTLT (22)

and the matlab command becomes place(AT , CT , [poles]). To look at how
the error of the observer varies over time, we will construct a new matrix
consisting of the two sets of state equation (for x and e). The resultant set
of equations looks like

˙̃x =

[
A−BK BK

0 A− LC

] [
x
e

]
+

[
BF
0

]
r (23)

y =
[
C 0

] [x
e

]
+ (0)r +D(u) (24)

and is known as the meta system. Utilizing the lsim function in matlab,
the states of the meta-state representation can be plotted. A step input is
used to initialize an error in the observer. The response is as expected and
occurs approximately 10x as fast as the system performs. Comparing the
performance of the closed loop step response with the observer to the original
state-feedback system as seen in figure 6, the rise time is approximately the
same for both systems, with about a 0.4 second delay introduced by the
initial error in the observer. The two converge at approximately 2.5 seconds.

8

Figure 5: Observer error for velocity and position observer estimate with an
initial error introduced of 1 m for position and 1m/s for velocity in the x-
direction. The error reduces to zero approximately 10x as fast as the system
closed loop poles.

9

Figure 6: The step response to a 1 meter reference in the x-direction. The
observer was initialized with a 1 meter error. The delay added to the system
was approximately 0.4 seconds, and the two converged to zero steady-state
error at approximately 2.5 seconds.

10

A Code

A.1 Observability Matrix

O =



1.0000 0 0 0 0 0
0 0 1.0000 0 0 0
0 0 0 0 1.0000 0
0 1.0000 0 0 0 0
0 0 0 1.0000 0 0
0 0 0 0 0 1.0000
0 −0.0104 0 0 0 0
0 0 0 −0.0104 0 0
0 0 0 0 0 −0.0208
0 0.0001 0 0 0 0
0 0 0 0.0001 0 0
0 0 0 0 0 0.0004
0 −0.0000 0 0 0 0
0 0 0 −0.0000 0 0
0 0 0 0 0 −0.0000
0 0.0000 0 0 0 0
0 0 0 0.0000 0 0
0 0 0 0 0 0.0000



11

A.2 Controllability Matrix

CT =



0 −0.0417 0 0 0 0.4000
0 0 0 −0.0417 0 0.4000
0 0.0417 0 0 0 0.4000
0 0 0 0.0417 0 0.4000

−0.0417 0.0004 0 0 0.4000 −0.0083
0 0 −0.0417 0.0004 0.4000 −0.0083

0.0417 −0.0004 0 0 0.4000 −0.0083
0 0 0.0417 −0.0004 0.4000 −0.0083

0.0004 −0.0000 0 0 −0.0083 0.0002
0 0 0.0004 −0.0000 −0.0083 0.0002

−0.0004 0.0000 0 0 −0.0083 0.0002
0 0 −0.0004 0.0000 −0.0083 0.0002

−0.0000 0.0000 0 0 0.0002 −0.0000
0 0 −0.0000 0.0000 0.0002 −0.0000

0.0000 −0.0000 0 0 0.0002 −0.0000
0 0 0.0000 −0.0000 0.0002 −0.0000

0.0000 −0.0000 0 0 −0.0000 0.0000
0 0 0.0000 −0.0000 −0.0000 0.0000

−0.0000 0.0000 0 0 −0.0000 0.0000
0 0 −0.0000 0.0000 −0.0000 0.0000

−0.0000 0.0000 0 0 0.0000 −0.0000
0 0 −0.0000 0.0000 0.0000 −0.0000

0.0000 −0.0000 0 0 0.0000 −0.0000
0 0 0.0000 −0.0000 0.0000 −0.0000


A.3 Matlab Analysis

%% Linear Systems Project MCEN 5228

% Riley Kenyon 12/14/2019

close all; clear all; clc;

%% Derive System Matrices

% Model of Plant

A = [0 1 0 0 0 0; 0 -0.0104 0 0 0 0; 0 0 0 1 0 0; 0 0 0 -0.0104 0 0; 0 0 0 0 0 1; 0 0 0 0 0 -0.0208];

B = [0 0 0 0; -0.04167 0 0.04167 0; 0 0 0 0; 0 -0.04167 0 0.04167; 0 0 0 0; 0.4 0.4 0.4 0.4;];

C = [1 0 0 0 0 0; 0 0 1 0 0 0; 0 0 0 0 1 0];

12

D = zeros(3,4);

model = ss(A,B,C,D);

%% Simulate Step Response

t = [0:0.01:10];

[y,~,~] = step(model,t); % This is a step to the rotor input

figure, hold on;

subplot(2,2,1)

plot(t,y(:,:,1),’LineWidth’,1.5)

legend(’x’,’y’,’z’,’Location’,’NorthWest’,’Box’,’Off’)

title(’T1’)

xlabel(’Time (s)’)

ylabel(’Position (m)’)

subplot(2,2,2)

plot(t,y(:,:,2),’LineWidth’,1.5)

title(’T2’)

xlabel(’Time (s)’)

ylabel(’Position (m)’)

subplot(2,2,3)

plot(t,y(:,:,3),’LineWidth’,1.5)

title(’T3’)

xlabel(’Time (s)’)

ylabel(’Position (m)’)

subplot(2,2,4)

plot(t,y(:,:,4),’LineWidth’,1.5)

title(’T4’)

xlabel(’Time (s)’)

ylabel(’Position (m)’)

sgtitle(’Step Response’,’Fontsize’,12)

% u = ones(4,length(t));

% figure, lsim(model,u,t);

% Zero input response

% zir = ss(A,zeros(size(B)),C,zeros(size(D)));

13

% initial(zir,[1,-1,0,0,0,0]’)

%% System Properties

% Controllability

c_mat = [B A*B A^2*B A^3*B A^4*B A^5*B]; % could use ctrb(A,B)

r = rank(c_mat);

% Note that the rank of the controllability matrix is full row rank which

% implies that the system is completely controllable

% Observability

o_mat = [C; C*A; C*A^2; C*A^3; C*A^4; C*A^5]; % Could use obsv(A,C)

% o_mat is full rank implies system is completely observable

%% State Feedback Controller

%p = [-10,-10, -10, -7, -7, -7]; % Desired closed loop poles

p = [-3,-3,-3,-5,-5,-5];

K = place(A,B,p); % Gain matrix to move poles to desired position

A_CL = A - B*K; % Closed loop system A

F = pinv(inv(-A_CL)*B); % Determine pre-feedback gain matrix

model2 = ss(A_CL,B*F,C,D*F); % Model of closed loop with desired pole loc.

% Simulate Response

t = [0:0.01:3];

r = [1 0 1 0 1 0]’*ones(1,length(t));

[y,t,x] = lsim(model2,r,t);

figure, subplot(3,1,1)

plot(t,y(:,1),’LineWidth’,1.5)

ylabel(’Position(m)’)

xlabel(’Time(t)’)

legend(’x’)

subplot(3,1,2)

plot(t,y(:,2),’color’,[0.8500 0.3250 0.0980],’LineWidth’,1.5)

ylabel(’Position(m)’)

xlabel(’Time(t)’)

legend(’y’)

subplot(3,1,3)

14

plot(t,y(:,3),’color’,[0.9290 0.6940 0.1250],’LineWidth’,1.5)

ylabel(’Position(m)’)

xlabel(’Time(t)’)

legend(’z’)

sgtitle(’Step Response’,’fontsize’,12)

% Zero-input response of closed loop

% zir2 = ss(A_CL,zeros(size(B*F)),C,zeros(size(D*F)));

% initial(zir2,[1,-1,0,0,0,0]’)

%% State Observer

%p = [-100,-100,-100,-110,-110,-110];

p = [-50,-50,-50,-30,-30,-30];

L = place(A’,C’,p);

L = L’; % using place to determine L requires transpose

% Meta-state Matrix

C_tilde = [C zeros(size(C))];

A_tilde = [(A - B*K) B*K; zeros(size(A)) A-L*C]; % Matrix for system and error

B_tilde = [B*F; zeros(size(B*F))];

D_tilde = zeros(size(C_tilde,1),size(B_tilde,2));

model3 = ss(A_tilde,B_tilde,C_tilde,D_tilde);

% State Observer Error given an initial offset

[~,t,x] = initial(model3,[zeros(1,6) 1 1 0 0 0 0]’); % offset observer error

figure,hold on

subplot(2,1,1)

plot(t,x(:,7),’LineWidth’,1.5)

xlim([0 0.5])

xlabel(’Time (s)’)

ylabel(’Position (m)’)

subplot(2,1,2)

plot(t,x(:,8),’LineWidth’,1.5)

xlim([0 0.5])

xlabel(’Time (s)’)

ylabel(’Velocity (m/s)’)

sgtitle(’Observer Error’,’fontsize’,12)

% step response using observer

15

t = [0:0.01:3];

u = [1 0 0 0 0 0]’*ones(1,length(t));

[y_offset,t_offset,x] = lsim(model3,u,t,[zeros(1,6),1,zeros(1,5)]’); %Error Case

figure, hold on

plot(t,y(:,1),’LineWidth’,1.5) % Without observer error

plot(t_offset,y_offset(:,1),’LineWidth’,1.5)

xlabel(’Time (s)’)

ylabel(’Position (m)’)

legend(’Without Observer Error’,’Observer Error’,’Box’,’off’)

title(’Step Response’,’Fontsize’,12)

16

