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Abstract

This report describes the analysis of an RRC circuit as a signal and
system, both theoretically and experimentally. The characteristics
observed were recorded with a step response and a frequency response
function.

1 Introduction

The RRC circuit is an easy to measure, small, cheap, and overall great rep-
resentation of a first order system. Figure 1 shows the schematic of the
circuit and the terminals where the voltage is supplied and measured. Sys-
tem identification is performed by analyzing the step response of the circuit,
where the value of σ (the only pole location) can be found experimentally.
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Figure 1: RRC Circuit
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Figure 2: Open Loop Block Diagram

Performance characteristics such as rise time aid in the confirmation of com-
ponent values, and ultimately results in a better fitting model of the system
by comparing σ to a theoretically derived value. Where the value of σ is
influential in determining both performance and frequency response. When
analyzing the the system, the circuit should be thought of as a system and
a signal. Here, a signal is a description of how one parameter varies with
another. Monitoring how output voltage changes with respect to an input
voltage step is an example of a signal. A system is any process that produces
an output signal in response to an input, such as a varying the frequency or
amplitude of the input to a circuit. A signal can be manifested as a function
with respect to time. The voltage output of the circuit can be represented
by a function when subjected to a voltage step. A system can be repre-
sented as a block diagram as in 2 and with a frequency response function (or
Bode Plot). As previously stated, the results from both can aid in system
identification of component parameters and will be the objective of the lab.
Due to the system being in open-loop control, there is no feedback loop or
additional controller. As represented in Figure 2 there is a single transfer
function relating output voltage and input voltage.

2 Theoretical Transfer Function

The governing equation of state for an RRC circuit is shown in Equation
1, which can be derived by breaking up the system into idealized circuit
elements.

R1C1V̇out +
R1 +R2

R2

Vout = Vin, (1)

By taking the Laplace Transform of the differential equation, the resulting
transfer function of the system is represented by

G(s) =
Vout
Vin

=
R2

R1R2C1s+R2 +R1

, (2)
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where for the purposes of this lab, the values of R1 and R2 are assumed
to be 5kΩ, and the capacitor C1 to be 2.2 µF .In the initial analysis of this
system, by assuming R1 = R2 the preliminary transfer function G(s) can be
simplified to

G(s) =
Vout
Vin

=
1

RCs+ 2
(3)

As a reminder, a first order can also be represented in standard form by
Equation 4

G(s) = k̂
σ

s+ σ
, (4)

where σ is 2
RC

and k̂ is 1
2
. This is useful in for creating a preliminary model

of the system and estimating performance.
At this point, we can calculate a theoretical rise time for the system, as

well as steady state error. For the assumed resistor and capacitor values, the
rise time is tr = 12.1 ms calculated form the relation in Equation 5 for a first
order system. This estimate corresponds to a theoretical σtheo = 181.82.

tr =
2.2

σ
(5)

Experimental data will be cross-referenced to confirm the validity of the
model, described in section 2 where an adapted model of the system is formed
based upon the step response of the system and the physical values of the
resistors in the circuit. This information can be used to estimate the actual
value of the capacitor and gain a more accurate model.

3 Obtaining Measurements

The experimental results are obtained via the methods below. To understand
the RRC circuit as a signal, the step response is recorded along with rise time
(settling time was not deemed necessary to measure because the RRC is a first
order system and σ can be calculated from rise time alone). As a system,
the frequency response function will be formed based on some theory and
baseline measurements of attenuation and phase shifting.
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3.1 Procedure

3.1.1 Step Response

1. From the function generator produce a 1 Vpp, 500mv offset, 1 Hz square
wave to act as a 1 V step. Connect to the input of the circuit, Found
in Figure 1.

2. Tee off the waveform generator and connect another BNC cable to chan-
nel 1 of the oscilloscope, ensure that the acquisition of the waveform is
using the ”High-res” smoothing.

3. Using an oscilloscope probe, record the output Vout in channel 2 of the
oscilloscope. (Don’t forget to change the amplification to 10:1 if it is
not set).

4. Save the oscilloscope .png file and the .csv with 10,000 samples.

3.1.2 Frequency Response Data

1. From the function generator produce a 1 Vpp, 500mv offset Sine wave
at 10 Hz.

2. Tee off the waveform generator and connect another BNC cable to
channel 1 of the oscilloscope.

3. Using an oscilloscope probe, record the output Vout in channel 2 of the
oscilloscope.

4. Add measurements of phase and amplitude to the oscilloscope for both
channels.

5. Save the oscilloscope .png file and the .csv with 10,000 samples.

6. Repeat steps 1 - 5 with frequencies of [10 30 100 300 3000] Hz.

3.2 Experimental Results

From the data collected, an experimental rise time was measured to be tr =
12.233 ms and have a step response shown in Figure 3.
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Figure 3: The RRC step response
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Figure 4: The RRC step response

Using Equation 5, the experimental value of σexp = 179.84 which is within
2% of the theoretical σtheo = 181.82. To adjust the model with system iden-
tification, σ can be used to solve for the actual capacitor value. Measuring
the resistors give values of R1 = 4.976kΩ, and R2 = 5.040kΩ. Solving Equa-
tion 5 with the experimental value of σ and the measured resistances yield a
capacitor value of C1 = 2.22µF which is within the tolerance of the capacitor
(20%). The adjusted theoretical step response can found in Figure 4 along
with the initial theoretical model and the experimental response. Looking at
the circuit as a system, the value of σexp corresponds to a cutoff frequency
of 179.84 Rad/s which is equal to 28.6 Hz. To test the system’s response to
a varying sine-wave frequencies. The circuit was sampled at a variety of fre-
quencies to obtain a better understanding of the system as a filter. In Figure
5 visualizes the frequency response of the RRC with a theoretical bode plot
overlaid with experimental data.
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Figure 5: The Bode plot of the system with magnitude and phase plots
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4 Conclusion

The RRC circuit is a first order system, with an experimentally determined
pole of 179.84. In order to improve the system and decrease the steady-state
error you can implement a proportional gain feedback loop into the circuit
and shift the pole further left to decrease rise-time and adjust the steady-
state value. The circuit acts as a low pass filter with a cutoff frequency
of 28.6 Hz, visualized in Figure 5. The performance characteristics of the
system can be quantified with a rise time of tr = 12.233 ms and a DC-
gain of 0.504, both of which were experimentally determined. To create a
better representation of the system, the model was updated to reflect the
physical values of the resistors and then fitted to a capacitor value with the
experimental step response (as seen in Figure 4).

A Code

A.1 Creating Plots and Measuring Performance

%% Lab 01 - Industrial Automation - Riley Kenyon

close all; clear all; clc;

%% Experimental

data0 = csvread(’step.csv’,2,0);

y3 = data0(:,3)-data0(1,3); % change to zero offset

stepInput = data0(:,2)-data0(1,2);% change to zero offset

t3 = data0(:,1);

figure()

hold on

plot(t3,y3,’LineWidth’,1.5);

xlabel(’Time(s)’)

ylabel(’Volts(V)’)

axis([0,0.04,-0.05,0.55]);

%rt(1) = risetime(data0(:,2),data0(:,1));

%% Theoretical

R(1) = 4976; %5070;

R(2) = 5040; %5019;

C = 2.205e-6;

sys1 = tf(R(2),[R(1)*R(2)*C, (R(1) + R(2))]);
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sys = tf(1,[5000*C, 2]);

[y1,t1] = step(sys,’g’);

[y2,t2] = step(sys1,’r--’);

plot(t1,y1,’g’,’LineWidth’,1.5)

plot(t2,y2,’r--’,’LineWidth’,1.5);

%% Plotting

axes(’position’,[.45 .175 .4 .3])

box on % put box around new pair of axes

index = 0.035<t1 & t1<0.04;

hold on

plot(t1(index),y1(index),’g’,’LineWidth’,1.5);

plot(t2(index),y2(index),’r--’,’LineWidth’,1.5)

plot(t3(7732:8819),y3(7732:8819),’LineWidth’,1.5);

axis tight

legend(’Initial Model’,’Adjusted’,’Actual’);

%% Step Response Plot

figure()

hold on

plot(t3,y3,’b’,’LineWidth’,1.5);

plot(t3,stepInput,’k’,’LineWidth’,1.5);

axis([-0.001 0.04 -0.05 1.05]);

% Frequency data

f = (2*pi*[10 30 100 300 3000])’;

mag = 20*log10([0.473 0.343 0.144 0.052 0.010])’;

phase = -[19.2 45.2 70.8 79.4 88.7]’;

[MAG,PHASE,W] = bode(sys,{10,30000});

figure()

subplot(2,1,1)

hold on

semilogx(f,mag,’ro’,’LineWidth’,1.5);

semilogx(W(:),20*log10(MAG(:)),’LineWidth’,1.5);

set(gca,’xscale’,’log’)

xlim([0,30000])

xticklabels({})

ylabel(’Magnitude (dB)’);
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subplot(2,1,2)

hold on

semilogx(f,phase,’ro’,’LineWidth’,1.5);

semilogx(W(:),PHASE(:),’LineWidth’,1.5);

set(gca,’xscale’,’log’)

axis([0, 30000, -90, 0]);

xlabel(’Frequency (Rad/s)’);

ylabel(’Phase (\circ)’);
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