
Classification of the Mnist Dataset via Linear
Programming

Riley Kenyon

04/25/2020

Abstract

In this report linear programming will be used to determine the
coefficients of hyper planes for binary classifiers. The coefficients will
be used in a directed acyclic graph to determine the most likely clas-
sification of the number. The classifier will be trained and tested on
the mnist dataset to perform handwritten character recognition. The
solution minimizes the 2-norm of the hyper plane coefficients whilst
considering the margin from the hyper planes, weighed by a factor γ.

1 Introduction

1.1 Problem Statement

The proposed classification problem will introduce a number of hyperplanes
with coefficients that separate a feature set with some margin determined by
a weighting function. The problem utilizes the mnist handwritten digit data
base to build the classifier. The digit database will be separated into training
data that is used to determine the hyperplanes, and testing data that is used
to determine the accuracy of the model. The split is 60,000 images used for
training and 10,000 images used for testing. Each feature is an image of size
28x28 pixels which is ’flattened’ to a row vector of size 784. The data set
represents integer numbers 0 through 9 and will require

(
10
2

)
or 45 sets of

hyperplanes to distinguish each binary classification in the set.

1

2 Linear Programming

In linear programming, a method used to solve optimization problems, the
combination of constraint and criteria are written in the form

minimize cTx
subject to Ax = b

(1)

where the first equation represents the cost function, and the second states
the problem is ”subject to” the constraints. This form in particular is repre-
sentative of equality constraints, however the constraints can also described
by an inequality. To pose classification as a linear programming problem the
cost function will be derived from the margin of a hyperplane.

2.1 Deriving the Cost Function

For the two dimensional case, a hyperplane can be thought of as a line that
is strictly separable for a set of data based on it’s properties as seen in figure
1. For the example, the feature set can be described by the coefficients of
the hyperplane, in this case the slope of the line and the y-intercept. The
form of a line, trivially being

y = mx+ b (2)

Alternatively, if this was put into the form of a vector consisting of the
elements y and x, the form would take on the form of[

1 −m
] [y

x

]
− b = 0 (3)

In higher order systems, this becomes more interesting due to the additional
coefficients. The equation of the hyperplane can thereby be written as

a1x1 + a2x2 + . . .+ anxn − b = 0 (4)

or alternatively in the matrix form of

aTx− b = 0 (5)

where a is a vector of coefficients and b is an offset. Looking at the 2D
problem as classification, if the features (coordinates) are greater than the

2

hyperplane by some margin, ε, then the features are identified as blue and
if they are less than the hyperplane by some margin, then the features are
identified as red.

Looking at the 2D data set, there can be an infinite number of hyper-
planes as long as the data is strictly separable. In order to determine a cost
function, the equation of two points x̂1 and x̂2 will be looked at. Assuming
the hyperplane parameters a and b, and a margin of ε = 1, the equations of
one point x̂1 can be shown to be

aT x̂1 − b = 1 (6)

where x̂1 is greater than the hyperplane. The second equation of x̂2 being

aT x̂2 − b = −1 (7)

where x̂2 is less than the hyperplane. The distance between these points can
be represented by a vector

x̂2 = x̂1 − t
a

||a||
(8)

where t is a scalar multiplier and vector is the unit version of a. Substituting
x̂2 in equation 7 results in the expression

aT
(
x̂1 − t

a

||a||

)
− b = −1 (9)

simplifying the equation by using aT x̂1 − b = 1 and solving for t results in

t =
2

||a||2
(10)

in essence, the margin of the hyperplane can be represented by the 2-norm of
the coefficients a. In implementation, setting the margin to a fixed value may
not result in the most effective classifier. To compensate for the variability
in each binary classifier, a weighting function based on slack variables is used
to loosen or tighten the requirements of how close a hyperplane can be to the
data. Essentially the weighting function acts as a tuning knob on the margin
which ultimately determines the values of hyperplane coefficients, the weight

3

Figure 1: Example of a hyperplane in 2D that separates data based on
characteristics. In this case, there is also a margin between the hyperplane
(represented as a line) and the two feature sets.

is represented by the variable γ. Formally this can be shown by the cost
function

minimize ||a||2 + γ(1Tu+ 1Tv)
subject to xT1 a− b ≥ 1− u

xT2 a− b ≤ −(1− v)
u > 0
v > 0

(11)

notice that the constraints are represented as xTa, fundamentally this is the
same as aTx but is necessary in the minimization for the vector a to be a
column vector.

3 Image Set Formulation

The mnist data set is comprised of handwritten digits in the range 0 to 9.
For each image in the set, there is an accompanying label that will be used to

4

determine if the classifier correctly identified the images as well as training
the model. Each image is represented as a row vector of a matrix,

Images =

xT1
xT2
xT3
xT4
xT5

 (12)

in the training set there are 60,000 images of size 28x28 which corresponds to
a matrix size (60,000x784). In order to use a binary classifier (data separated
by a hyperplane), the images are sorted according to their label to each
set, totalling to 10 different matrices. To construct a binary classifier, the
optimization problem is set up to solve for the coefficients of the hyperplane
that separates two sets of digits. For this to be uniform, the smaller of the
two digits is setup in the first constraint, being greater than the hyperplane,
and the second digit is setup to be less than the hyperplane. For an example
comparing the digits 0 and 1, this corresponds to the inequalities

XT
0 a− b ≥ 1− u

XT
1 a− b ≤ −(1− v)

(13)

where X0 corresponds to the matrix of digits labelled as 0 and X1 corresponds
to the matrix of digits labelled as 1. Recall from the minimization in equation
11, u and v are slack variables that are weighted according to a factor γ
to allow the hyperplane to deviate from a unit margin. Each row of the
matrices correspond to an individual feature in the respective labeled set.
This procedure is repeated until all permutations of the digits are accounted
for, resulting in 45 total hyperplane coefficients vectors.

4 Setting up the Linear Program

The optimization solver used in this analysis is the auxiliary convex op-
timization solver CVX used in Matlab, although this procedure could be
performed with the Matlab routine linprog, the additional work necessary
to set up the constraint in the matrix is extensive and is more readily suited
for the text based setup of CVX. The solver can utilize both equality and
inequality constraints as inputs but was configured according to the linear
program formulation shown in equation 11. In addition to setting up the

5

optimization, the solver was changed from SDPT3 to sedumi, as it seemed
to work better in this formulation. The coefficients a and b were saved in a
10x10 matrix of cells, with each individual cell containing the optimization
parameters for the comparison of row m to column n, where m was chosen to
represent the smaller of the two numbers. According to the methods used in
determining the coefficients, in order to use the classifier properly, the smaller
of the two digits was required by definition to reside in the first constraint.
This method was reflected in the cell matrix as well, and subsequently the
cell matrix is upper diagonal. For example, the comparison of the digits 0
and 1 corresponds to coefficients in the cell A{1, 2} due to Matlab indexing
beginning at 1 rather than 0. The same format is used for the coefficients b,
stored int the cell matrix B.

5 DAG

A directed acyclic graph, or DAG, is used to determine the outcome of the
classifier. The process of elimination follows from 10 evaluations, with the
final determining the most likely digit that the input image represents. A
representation of the DAG is shown graphically in figure 2. Looking at
this method from the perspective of the problem, each binary classification
corresponds to evaluating the image with the coefficients contained the rep-
resentative cell. The starting point for the classifier is the top right cell in the
matrix that compares the digits 0 and 9. Incorporating the DAG in the sense
of the cell of matrices has some useful intuition. If the matrix multiplication
results in a scalar value greater than zero, it follows the logic that the input
inmage is not the second element in the comparison. This relation manifests
itself in decrementing the column of the cell matrix to continue evaluating
the cells of binary classifiers representing the digit in row m. The converse is
true for the matrix multiplication resulting in a scalar value less than zero,
this corresponds to moving down the other path in the DAG, and in the
sense of the cell matrix, incrementing the rows. By following this process,
the classifiers continue evaluating the more likely option against the rest of
the digits in the set. At the 10th iteration of the classifier, the evaluation
corresponds to the diagonal cells of the matrix and the outcome represents
the most likely digit that the input image represents.

6

Figure 2: A DAG for an example of binary classifiers of digits ranging 0 to
3. The principle can be extrapolated to the full size of the mnist data set.

7

6 Results

The problem is fully defined and can be solved using linear programming with
CVX. The solution vector obtained contains the hyperplane coefficients a
and the offset coefficients b, which are stored in a cell matrix of size 10x10.
For the training data, this means performing calculation based on a feature
of size 784 and iteratively solving for the optimal solution based on the cost
function. The weighting coefficient for the margin γ is chosen ahead of solving
but produces varying results depending on the value. In the instance of
this project, the value of is chosen to vary over a logarithmic range until
reasonable accuracy is obtained and further granularly iterated to the desired
accuracy. In the end, a value of γ = 10−4 was chosen and produced an
accuracy of 94.58%. The chart below outlines the various iterations and
percent accuracy until converging to an acceptable classifier.

γ Accuracy (%)

100 91.63
10 91.63
1 91.73

0.1 91.75
0.01 91.87
1e-3 93.03
4e-4 93.69
1e-4 94.58
1e-5 94.06

As seen in the table above the value of γ = 10−4 performed best out of the
binary classifiers in the DAG, although all of the configurations were able to
correctly classify the images with an accuracy over 90%. This performance
was based on the test images from the data set which consisted of 10,000
images in the mnist data set. Although once trained, the classifier was able
to classify an image under 10−5 seconds, the time required to train each set
of hyperplane parameters took on the order of 4 hours.

7 Downsampling by Interpolation

To reduce the time required for training, adjustments could be made to the
feature set in the form of filtering or reduced sampling. One method of

8

Figure 3: ”Comparison of 1D and 2D interpolation” by cmglee from wikipedia
under CC BY-SA 4.0, cropped to fit document format. Bicubic interpolation
is the default for image resize function in matlab.

reducing the number of calculations is to resize the image by some factor.
There are several methods to perform this operation, all of which involve some
form of interpolation. The most simple being the nearest neighbor approach,
where the position of a pixel is reduced by a factor and takes on a value of the
nearest neighboring pixel. The most complex involves bicubic interpolation,
where each row and column are interpolated by cubic functions. The bicubic
method is utilized as the default for the matlab function imresize.

This method of interpolation was used to reduce the size of an image by
a factor of 4 and by a factor of 16. The feature size is reduced from a row
vector of 784 to vectors of size 196 and 47. Using the reduction significantly
decreases the computation time required to determine the coefficients of the
hyperplane. For the analysis, a value of γ = 4e− 4 was chosen. An example
of the reduction can be seen in the following figure

The scaling factors produce an image similar to the original. With a
scaling factor of 0.5 in each direction or a total reduction of 4, the content
of the image is still visible. However reducing the original image size by 16
results in blurred image vaguely resembling the original. In the table below,

9

Figure 4: The bicubic interpolation to reduce the size of the image. (left)
Original, (center) scaled by 0.25, (right) scaled by 0.0625. The image is the
first element of the mnist dataset.

the time required to obtain the hyperplane coefficients from the training data
is compared with the accuracy of the model inference for a γ = 4e− 4.

Scale Time (minutes) Accuracy (%)

1 180+ 93.69
0.5 60 94.64
0.25 9.2 93.20

Notice the time elapsed for the solver is significantly decreased particu-
larly for the reduction of 16. Interesting enough, the performance is similar
to the full size images, likely due to the accuracy of the bicubic interpola-
tions. In the case of the 0.5 scaling, the performance improved on the mnist
data set compared to the original images.

8 Conclusion

Utilizing the mnist digit data set, binary classifiers were created by linear
programming to solve for the coefficient of the hyperplanes. The margin
was tuned according to a weighting parameter γ, the optimal solution of
those tested occurred with a γ = 10−4 to obtain a DAG that possessed
an accuracy of 94.58%. The proportion of training data to testing data
was 6:1, for a total set of 70,000 images. The image size (28x28) pixels
was reduced by downsampling and bicubic interpolation through the matlab
routine imresize. The scaling was reduced by 2 and 4, for an overall image
reduction of 4 and 16 times respectively. The images, shown in figure 3

10

are representative of the quality obtained with the reduction. Although the
image quality was degraded, the filtering significantly reduced the processing
time of determining the hyperplane coefficients from the CVX optimization.
The reduction factor of 2 actually increased the accuracy of the DAG to
94.64% for a weighting factor γ = 4e − 4. The processing time also scaled
according to the image reduction, producing hyper plane coefficients at rates
that were 4 to 16 times faster.

A Code

A.1 Training Function

%% Classification Project - Training

% Riley Kenyon

% MEID:272-513

% 04/24/2020

%--

close all; clear all; clc;

%% Import data

save_file = ’DAG_KENYON_BAK.mat’; % File to save coefficient cells A,B

load mnist.mat % Included is 60,000 sample images, and 10,000 test images

load DAG_Kenyon.mat % Filtered dataset

if exist(’images_play’) % Use filtered data if possible

clear images

images = images_play;

end

% Pre-allocate cells

idx = cell(10);

data = cell(10);

A = cell(10,10);

B = cell(10,10);

% Iteration parameters beginning from 0 idx

N = 9;

11

% Set weighting function gamma

g = 0.0001;

%% Sort images into categories - each row correspond to an image

for i = 0:9

idx{i+1} = find(labels==i); % Find all zeros

data{i+1} = double(images(idx{i+1},:)); % Re-assign all images for idx (need double conversion for cvx

end

% Check

plotImg(idx{1}(1),images,labels); % Visualize

%% Construct matrices for determining a and b

tic

for k = 1:length(g)

gamma = g(k); % For gamma iteration

for ii = 0:N

for jj = 0:N

if jj <= ii

continue

else

A0 = data{ii+1};

m0 = size(A0,1);

A1 = data{jj+1};

m1 = size(A1,1);

n = size(A0,2);

b = ones(m0,1);

cvx_solver sedumi

cvx_begin

variables a(n) b u(m0) v(m1)

minimize(norm(a,2) + gamma*(ones(1,m0)*u + ones(1,m1)*v))

subject to

A0 * a - b >= 1 - u; % Lower digit

A1 * a - b <= -1*(1-v); % Higher digit

v > 0;

u > 0;

12

cvx_end

A{ii+1,jj+1} = a;

B{ii+1,jj+1} = b;

end

end

end

toc

% Save coefficients

save(save_file,’A’,’B’);

end

function [] = plotImg(nHold,images,labels)

% Function for plotting a Handwritten digit

N = sqrt(length(images(1,:)));

disp(N)

IMAGE = reshape(images(nHold,:),N,N)’;

disp(labels(nHold))

figure,imagesc(IMAGE)

colormap(flipud(gray(256)))

axis equal

set(gca, ’YTick’, []);

set(gca, ’XTick’, []);

axis off

end

A.2 Testing Function

%% Classification Project - Testing

% Riley Kenyon

% MEID:272-513

% 04/14/2020

%--

clear all; close all; clc;

useFilteredData = true; % Change to true to use Ap and Bp

% Load test data and hyperplane coefficients

13

load mnist.mat % interested in the 10,000 test images

load DAG_Kenyon.mat % Load coefficients

idx = cell(10); data = cell(10); % Pre-allocate cells

if useFilteredData == true

clear images_test A B

images_test = images_test_play;

A = Ap;

B = Bp;

end

correct = 0; % counter

% Determine accuracy of classifier

tic

for k = 1:length(images_test)

im = double(images_test(k,:)); % import image

% Create DAG

ii = 0; % First Digit

jj = 9; % Last Digit

N = 9; % Total allowable comparisons

count=0; % Initialize comparison count

while count < N

% +1 to account for matlab index starting at 1 rather than 0

val = im*A{ii+1,jj+1} - B{ii+1,jj+1};

if val > 0

% More likely to be ii than jj -> index -jj

jj = jj-1;

else

% More Likely to be jj than ii --> index ii

ii = ii+1;

end

14

% Log comparison

count = count +1;

end

% More likely to be ii

if val > 0

prediction = ii;

% More likely to be jj

else

prediction = jj;

end

% Increment counter if prediction is correct

if prediction == labels_test(k)

correct = correct+1;

end

end

toc

% Output stats

fprintf("Accuracy %0.2f\n",correct/k);

fprintf("Number Correct %0.0f\n",correct);

A.3 Custom Scaling Function

%% Classification Project - Image Scaling

% Riley Kenyon

% MEID:272-513

% 04/24/2020

%--

close all; clear all; clc;

%% Load dataset and configure

load mnist.mat

% Set scaling for resizing and interpolation

scale = 4;

15

factor = 1/scale;

% Filter dataset

[m,n] = size(images);

images_play = zeros(m,n*factor^2);

images_test_play = zeros(length(images_test),n*factor^2);

for ii = 1:length(images)

images_play(ii,:) = filterImg(images(ii,:),factor);

end

for jj = 1:length(images_test)

images_test_play(jj,:) = filterImg(images_test(jj,:),factor);

end

function[IMAGE] = filterImg(img,factor)

% Function to resize image using bicubic interpolation

N = sqrt(length(img));

IMAGE = reshape(img,N,N)’;

IMAGE = imresize(IMAGE,factor)’;

IMAGE = reshape(IMAGE,[1,(N*factor)^2]);

end

A.4 Plotting

%% Making figures for report

clear all; close all; clc;

% Hyperplane analogy

f = @(a,x,b) a.*x+b + randn([length(x),1]);

x = [0:0.1:10]’;

a = -1;

b1 = 10;

b2 = 3;

b_mid = (b1+b2)/2;

m1 = (b2+b_mid)/2;

m2 = (b_mid+b1)/2;

data1 = f(a,x,b1);

data2 = f(a,x,b2);

16

figure, hold on

plot(x,data1,’o’,’MarkerFaceColor’,’b’,’MarkerEdgeColor’,’b’)

plot(x,data2,’o’,’MarkerFaceColor’,’r’,’MarkerEdgeColor’,’r’)

plot(x,a*x+(b1+b2)/2,’g’,’LineWidth’,3)

plot(x,a*x+m1,’k--’,’LineWidth’,3)

plot(x,a*x+m2,’k--’,’LineWidth’,3)

legend(’B’,’R’,’Hyperplane’,’Margin’,’box’,’off’)

box(’on’)

17

	Introduction
	Problem Statement

	Linear Programming
	Deriving the Cost Function

	Image Set Formulation
	Setting up the Linear Program
	DAG
	Results
	Downsampling by Interpolation
	Conclusion
	Code
	Training Function
	Testing Function
	Custom Scaling Function
	Plotting

