
Diet Problem Optimization

Riley Kenyon

February 13, 2020

1 Problem Statement

The diet problem is an optimization problem where quantities of nutrients are
suggested by the FDA and are thereby followed to remain healthy. A sample
list of food is provided with all of the included nutrients per serving. The
cost function in this problem is determined by the price per serving of each
variety of food. The objective in this optimization is to minimize the cost
needed to satisfy the nutrient requirements. In addition to the minimization,
there is a maximum quantity of nutrients that cannot be exceeded. After
determining the minimum solution, another variation of the problem will be
optimized to maximize the amount of protein in the diet while still meeting
all other nutrient conditions.

2 Formation of Optimal Solution

The nutrients of interest are described in table (1). There are thresholds on
the lower and upper end of the values. A linear programming solver, such
as Matlab’s LinProg(), will be used to yield the optimal solution. In the
formulation of the optimal solution that minimizes the cost ($), there are
four items that are essential to understanding the solution: A, c,b,x. This
matrix (A) and vectors (c,b,x) represent different sections of the problem
but are used to fully define the constraints for the solver. Matrix A is the
description of the system, which is the various foods that could be used
to obtain nutrients. Each food group has a different amount of calories,
cholesterol, protein, etc. The matrix is constructed as the augmentation
of column vectors belonging to each food group. The rows in the matrix

1

Nutrient Unit Min Max
Calories cal 2000 2250
Cholesterol mg 0 300
Total Fat g 0 65
Sodium mg 0 2400
Carbohydrates g 0 300
Dietary Fiber g 25 100
Protein g 50 100
Vitamin A IU 5000 50000
Vitamin C IU 50 20000
Calcium mg 800 1600
Iron mg 10 30

Table 1: The daily values as mandated by the FDA. The diet must remain
within the minimum and maximum bounds.

thereby correspond to the nutrients. A representation of the matrix is shown
in equation (1), where fi corresponds to the information of a given food
group. The system can also be represented in equation (2), where vi are
the values associated with a single nutrient across all food groups. The
number of servings per food group will serve as x, the column vector of size
n. This vector is used in conjunction with the c vector to create the cost
function. The c vector is a column vector representation of cost per serving.
When multiplied with the number of servings, the result is overall cost ($).
This is the quantity that the solver will attempt to minimize. Lastly and
most importantly is the constraints put on the overall number of nutrients,
represented by the vector b (a column vector of length m).

A =
(
f1 f2 · · · fn

)
(1)

A =
(
v1 v2 . . . vn

)T
(2)

Recall that Ax is the overall quantity of nutrients for the given selection
of servings per food group. At this point the formulation of the overarching
system can be constructed. There are maximum requirements represented by
bmax, such that the system multiplied with the number of servings, Ax, must
be less than that quantity. Mathematically, this is represented in equation
3.

Ax ≤ bmax (3)

2

Ax ≥ bmin (4)

−Ax ≤ −bmin (5)

On the other end, there are minimum requirements represented by bmin.
The same conditions apply, such that the overall nutrients must exceed that
minimum value. The representation is shown in equation 4. However, in
order to utilize the solver the constraints must be in an inequality form,
specifically less than. To remedy the difference, the inequality is multiplied
through by a negative to flip the direction of the inequality. The resultant
equation is shown by equation 5. Lastly, the solver will need bounds on
the number of servings. Logically, there can not be negative amounts of
servings, so x will be constrained to positive quantities. Using a similar trick
to what was described above, the identity matrix will be used with a negative
representation to yield equation 6.

−Ix ≤ 0 (6)

Using the three separate matrices, they will be augmented to form a single
matrix Â that is used with the solver. The same applies for the constraint
matrix b̂. The representation of the two are found is equation 7 and 8 re-
spectively.

Â =

 A
−A
−I

 (7)

b̂ =

bmax

bmin

~0

 (8)

2.1 Optimal Results

Now that the problem is completely defined and ready to be used with the
solver, the process is a single line of code: linProg(c, Â, b̂). The solver per-
formance an optimization on the premise of the following relation:

min cTx

s.t. Ax ≤ b
(9)

The results of which are shown in table 2. The overall cost accrued in the
solution is $0.956 consisting of mostly vegetables and popcorn.

3

Food Quantity Cost ($)
Frozen Broccoli 0.235 0.0165
Potatoes, Baked 3.545 0.213
Skim Milk 2.168 0.282
Peanut Butter 3.601 0.252
Popcorn, Air-Popped 4.823 0.193
Total Cost: 0.956

Table 2: Optimum solution for minimizing cost and satisfying bounds of
nutrient requirements.

Food Quantity Cost ($)
Frozen Broccoli 0.252 0.0403
Carrots,Raw 0.036 0.0025
Skim Milk 3.949 0.5130
Poached Egg 1.336 0.1069
Peanut Butter 2.754 0.1928
Popcorn,Air-Popped 10.390 0.4156
Total Cost: 1.271

Table 3: Optimum solution for minimizing cost, satisfying bounds of nutrient
requirements, and maximizing protein.

2.2 Protein Variation

Although most cost effective, it is more beneficial to create additional con-
straints to adapt to personal preferences. One such variation is to maximize
the amount of protein in the solution. To do this, the problem will remain
mostly the same. All cost functions and system descriptions are equivalent
to the previous setup. However, in the constraint section of the formulation,
the minimum value in protein is replaced by the maximum value. Thereby in
the formulation of equations 5 and 3, the intersection of the requirements of
protein imposes a solution where the selected servings contain protein equal
to the maximum daily value. Rerunning linProg(c, Â, b̂) results in a different
solution by adding in poached eggs to the mix. The solution to this setup is
shown in table 3.

4

3 Conclusion

The diet problem is a unique optimization problem that can be solved using
linear programming. In the formulation of the setup, manipulations are
required to be made to utilize a solver that assumes an inequality. The cost
function in this example is to minimize cost ($), however it could be number of
servings or by food preference using different weightings to shift serving sizes
one direction or another. Conditions can also be placed on the constraints of
the values to obtain specific solutions meeting those constraints. Quantities
such as x are required for both the cost function and constraints for the
system. After determining what the vector contains, the matrix A can be
massaged to yield the form required to create the inequality. In general,
it can be thought of as a multitude of row vectors, or column vectors. The
solution using the food groups in this example consisted mainly of vegetables
and items with high content of a specific nutrient. A protein emphasis shifted
the solution to contain another group, poached eggs, which is high in protein.

A Code

%% Homework #4 - Diet Problem

% The diet problem seeks to satisfy the cost function of required

% nutrients, the constraint is the minimum number of nutrients mandated by

% the FDA, and the variables containing various nutrient values are

% described in the excel spreadsheet. The prolem will be solved using

% linear programming and the linprog(c,A,b) function.

close all; clear all; clc;

% Import matrices

load lpmatrices.mat

load names.mat

% Get to form: Ax < b_max, Ax > b_min, x > 0

A_hat = [A; -A; -eye(size(A,2))];

b_hat = [b(:,2);-b(:,1);zeros(size(A,2),1)];

% Linear Programming

x = linprog(c,A_hat,b_hat);

5

cost = c*x;

names(x~=0)

% Adjust to personal preference: Maximize protein

b(7,1) = b(7,2); % set minimum value to upper bound

b_hat = [b(:,2);-b(:,1);zeros(size(A,2),1)];

x_new = linprog(c,A_hat,b_hat);

cost_new = c*x_new;

names(x_new~=0)

6

