
Discrete Time Control Implementation

Riley Kenyon

May 7th, 2019

Abstract

This report describes indirect controller design and how to simulate
and implement a continuous time controller digitally. The National
Instruments myRIO is used with methods of emulation to enact a
PI controller with hardware and software to obtain zero steady-state
error.

1 Introduction

The RRC circuit (shown in figure 1) previously used as a first-order system
in proportional control with the myRIO can be represented in a control loop
described in figure 2. The plant G which has an open-loop transfer function
described in equation 1 with R = 5kΩ, and C = 2.2µF. Under realizable
proportional control, the step response of the RRC improves with increased
proportional gain K. It is important to note that in implementation, the
controller cannot output a voltage higher than the max output. In order to

−

+

Vin

R1

−

+

VoutC1R2

Figure 1: RRC Circuit - a simple first order system representation

1



C(z) ZOH G(s)

A/D

R(z) e u Y (s)

−

Figure 2: Closed Loop Block Diagram of signal conversion between
myRIO(Blue) and input/output of circuit (Gray) using an digital to ana-
log converter(D/A) and an analog to digital converter (A/D).

avoid saturation, the gain of the controller has a physical limit or it becomes
non-linear and the control theory can become misaligned. For pure propor-
tional control there still exists a problem in implementation. Although the
system perform better (better rise time), the problem of steady-state error
still exists. There are two methods to eliminate steady state error, either with
infinite gain (perfect reference tracking), or with an internal model. For a
step input, this would require a pole at the origin (an integrator). To achieve
this, a PI controller will be implemented on the myRIO to obtain better rise
time than the open-loop system and achieve zero steady-state error.

G(s) = k̂
σ

s+ σ
= 0.5

2/RC

s+ 2/RC
, (1)

2 PI Controller Design

In proportional-integral control, the controller C(s) can be described with a
proportional and integral constant, as seen in equation 2

C(s) = Kp +
KI

s
= Kp

s+KI/KP

s
, (2)

where KI is the integral constant and KP is the proportional constant. For
implementing this controller, indirect design is used by designing a contin-
uous time controller C(s) and then implementing it later as a discrete time
controller C(z) by using emulation. The first tool used to determine the con-
troller is to look at the zero-pole-gain (zpk) form of the closed-loop transfer
function. The controller has a zero at s = −KI/KP and a pure integrator.

2



Figure 3: Root locus of the transfer function (controller with plant) with KP

pulled out to determine acceptable gain for the system.

The plant (RRC circuit) has a pole at s = −2/RC = 181.81. In order to
increase the rise time, the zero needs to be moved to the left. Or have a
greater KI than KP . As seen in equation 2, by making KI > KP , the zero
will move to the left significantly.

H(z) =
C(z)G(z)

1 + C(z)G(z)
, (3)

By keeping the transfer function of the controller with KP pulled out, the
ratio of KI/KP can be set and then multiplied with the transfer function of
the plant. Root locus analyzes the system as a function of proportional gain
in closed loop. Setting the ratio of the two constant, desired performance
can be achieved by changing KP to the value indicated with root locus, and
adjusting KI to compensate in the ratio. For the RRC circuit, the objective
is not to overshoot more than one time. Looking at the figure 3, selecting a
value of KP = 10 and a ratio of KI/KP = 500 yield certain characteristics
making it theoretically faster than the open loop configuration with a single
overshoot.

3



Figure 4: Step response of open-loop and closed loop system with PI con-
troller.

2.1 Step Response Simulation

After selecting a gain with desired performance characteristics from the root
locus, the step responses can be simulated. For simulation, the open-loop
system was compared to the PI controlled closed loop in the continuous time
domain. This verified that the new PI controller conformed to the design
restrictions of limited overshoot and better rise-time. It was also useful to
see how the controller would be implemented digitally. For that the Tustin
method of emulation was used for the controller. This choice was made
because Tustin maps the stable region in continuous time domain to the
stable region in the discrete time domain, and additionally it was not needed
to be excessively fast (a sampling period of 1 ms was selected). Note that
for emulation, it was important to see how the controller performed in the
digital domain so using matlab’s built in ’c2d’ function with the parameter
of ’tustin’ the controller was emulated to get C(z) while the continuous time
plant G(s) was combined with a Zero Order Hold (ZOH) to get G(z).

4



3 Z-Transform

In order to convert to implementable code, the Z-transform was taken of the
PI controller. The method of emulation, as described in the previous section
was to use Tustin in which s is represented as

s =
2

T

Z − 1

Z + 1
, (4)

where T is the sample period. Plugging in this for the PI controller yields

C(z) =
2KP (Z − 1) + TKI(Z + 1)

2(Z − 1)
=

(TKI + 2KP )Z + (TKI − 2KP )

2Z − 2
,

(5)
and can be further simplified to controller output with respect to error as

U(z)

E(z)
=

(TKI + 2KP ) + (TKI − 2KP )Z−1

2 − 2Z−1
. (6)

In this form, the controller can be manipulated into a difference equation that
is implementable in code on the myRIO. This is because a Z−1 is equivalent
to a delay. Converting C(z) into a series of analog inputs and outputs results
in the difference equation

u[k] =
(TKI + 2KP )e[k] + (TKI − 2KP )e[k − 1] + 2u[k − 1]

2
, (7)

where u[k] is the current output of the controller (analog-output), and e[k] is
the current error between the current value and the reference (analog-input).

4 Implementation (LABVIEW)

The difference equation represented in equation 7 is how to implement con-
trollers through code, which can be done on the myRIO with the use of Lab-
VIEW. Taking a look at some LabVIEW code, the overall loop is a timed
loop structure running at a 1 MHz clock speed and 1000 clock ticks per loop
which is a 1 kHz sampling rate. The reference to the control loop is a 1.25
Hz square-wave to repeat multiple step inputs to the system. Looking at
the main computation section, there is the implementation of the difference

5



Figure 5: LabVIEW code of experimental setup with timed loop timer con-
figuration (left) and square wave function generator with frequency of 1.25Hz
(right)

Figure 6: The difference equation written into labVIEW, replicating the Z-
transform of the PI controller in terms of input error e[k] and controller
output u[k].

equation. The analog input and output are configured to run on the C chan-
nel of the myRIO, and read e[k] and output u[k] respectively. In order to
obtain previous iterations of the error and controller output, a shift register is
used and the previous value is worked into the proper operations to replicate
the difference equation.

5 Digital-Controller Results

Looking at the continuous time controller and the emulated version seen in
Figure 4, there is a noticeable discrepancy between the two. The step re-
sponse of the digital controller had more overshoot due to the phase shift as-

6



Figure 7: Simulated step response of the RRC circuit under PI control as it
compares to the actual step response using the digital controller.

sociated with sampling. Upon implementation in LabVIEW on the myRIO,
a sampling rate of 1 ms was used to interpret analog input and deliver an out-
put to the RRC circuit. The simplest way to represent the output of a digital
controller to a plant is to use a Zero Order Hold (ZOH), or a digital to analog
converter (D/A). To perform simulations of the closed loop system, the ZOH
is combined with the plant G(S) to get the Z-transform interpretation of the
plant. This representation G(z) is used with the emulated controller C(z) to
simulate how the system will react in a digital control setting. The controller
was emulated using the Tustin method to ensure stability, and the simulation
was compared to the continuous theoretical step response in Figure 4. Look-
ing at how the theoretical model compares to the actual implementation,
the step response was recorded on an oscilloscope and compared to the step
response of the digital system in Matlab. The overshoot observed on the os-
cilloscope is slightly greater than the simulated overshoot, however this more
closely follows the theoretical step response rather than the step response of
the continuous closed loop system.

7



6 Conclusion

The theory behind the controller and the digital implementation and the of
the system matched up nicely. With the Tustin method of emulation, the
stable controller was successfully mapped to the digital domain in the stable
region. The performance of the controller met the loose standards of limited
overshoot (not multiple oscillations) and a rise time of 1.5 ms, performing
faster than the open-loop system 12.3 ms. By using a pure integrator, the
steady-state error to a step was reduced to zero as seen in Figure 7.

A Code

A.1 Creating Plots

%--------------------------------------------------------------------------

%% Industrial Automation Lab 5 - FPGA

% Riley Kenyon 4/30/2019

%% Experimental Data

clear all; clc; close all;

% LabVIEW

data = load(’kp10ki5000.mat’);

data1 = data.kp5000ki;

data1(:,1) = (data1(:,1) - data1(1,1) - 318)*0.001;

% oscilloscope

exp01 = csvread(’experimental_kp10.csv’,2,0);

% simulation

R1 = 5100; % ohm

C1 = 2.2e-6; % uF

G = tf(1,[R1*C1 2]); % RRC

%PID controller

kp = 10;

ratio = 500;

Ts = 0.001;

ki = ratio*kp;

8



C2 = tf([kp ki],[1 0]);

Gz = c2d(G,Ts,’zoh’);

L2 = C2*G;

CL = feedback(L2,1);

Cz = c2d(C2,Ts,’tustin’);

CLz = feedback(Cz*Gz,1);

% plotting

figure()

hold on

% plot(data1(:,1),data1(:,2),’LineWidth’,1.5);

step(CL)

step(CLz)

step(G)

xlim([-0.00065,0.05]);

legend("CL","CLz","G")

figure()

hold on

plot(exp01(:,1)+0.00065,exp01(:,2),’LineWidth’,1.5);

step(CLz)

xlim([-0.00065,0.05]);

legend("Actual","Theoretical")

9



A.2 LabVIEW Code

10


