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Abstract

This report describes how using a simplified FPGA interface re-
duces computational overhead and results in more accurate loop du-
ration at high sampling rates. In addition the report describes how at
low sampling rates, even with a stable controller, a system can become
unstable.

1 Introduction

The RRC circuit (shown in figure 1) previously used as a first-order system
in proportional control with the myRIO can be represented in a control loop
described in figure 3. The plant G which has an open-loop transfer function
described in equation 1 with R = 5kΩ, and C = 2.2µF. Under realizable
proportional control, the step response of the RRC improves with increased
proportional gain K. It is important to note that in implementation, the
controller cannot output a voltage higher than the max output. In order to
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Figure 1: RRC Circuit - a simple first order system representation

1



Figure 2: The nyquist plot of the loop transfer function L(s) with gain
K = 7. Notice there is no encirclement of -1, representative of a stable
system. Additionally, the gain margin of the closed loop is infinity meaning
that the continuous time system remains stable for any proportional gain
K > 0.

avoid saturation, the gain of the controller has a physical limit or it becomes
a non-linear and the control theory can become misaligned.

G(s) = k̂
σ

s+ σ
= 0.5

2/RC

s+ 2/RC
(1)

Theoretically, in proportional control the RRC circuit should not be able
to go unstable. The continuous time closed loop transfer function T (s), as
shown in equation 2, is stable for all K > 0. This is more easily shown using
a Nyquist plot of the loop transfer function L(s), as seen in figure 2.

T (s) =
KG

1 +KG
=

L(s)

1 + L(s)
, (2)

The Nyquist plot does not encircle -1, and can be increased infinitely but will
still not cross over axis. The gain margin of the closed loop system is infinity
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Figure 3: Closed Loop Block Diagram of signal conversion between
myRIO(Blue) and input/output of circuit (Gray) using an digital to ana-
log converter(D/A) and an analog to digital converter (A/D).

representative of the statement that any gain will not make it go unstable.
However, it is possible to go unstable due to sampling which is rooted in the
phase margin of the system.

2 FPGA

Formally a Field Programmable Gate Array, the myRIO comes with a ’shipped
personality’. This is the standard FPGA setup that comes stock with any
myRIO project. Utilizing this default setup is great due to the access of
stock functions such as analog input and analog output. However, there is a
downside of the default personality and that is due to the overhead associated
with the stock FPGA. In order to speed things up, a custom FPGA template
and .dll file will be created and used to perform proportional control of the
RRC circuit. The only two functions that are necessary in this situation are
the input of analog-in 0 (AIO) and the output of analog-out 0 (AO0).

2.1 LabVIEW setup

To create the setup described in the above section, a custom FPGA template
has to be modified. As seen in figure 4, the personality was simplified to an
analog input and output on channel C of the myRIO. The analog input (AI0)
is set with an indicator, and the output (AO0) is set with a control. It is
important to note that these variables do not correspond to voltages, but
rather counts. If the full-scale voltage of the myRIO is looked at, it is found
to be ±10V . Additionally, looking at the resolution of the myRIO analog
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input,it is a 12 bit DAC meaning it can resolve 212 sections within the full-
scale voltage. These two pieces of information give insight into how to read
inputs or outputs from the FPGA variables. The voltage resolution of the
myRIO is therefore 212/20 or 204.8 counts/V. This conversion factor is what
is used to interpret the input and adjust the output to be in terms of counts
or volts. This is accounted for when using the analog in or analog out blocks
from the default personality, but because a custom template is in use the
conversion factor needs to be accounted for in the main virtual instrument.
The main timed loop performs jitter, reference function generation, and the
implementation of a proportional controller. The configuration shown in
figure 4 is for the 100 Hz sampling rate, running on a 1 MHz clock cycle.

3 Jitter

Jitter, or the variation between loop periods, is used as a metric to look
at how accurately a controller follows a given time interval. Items such as
real-time plotting within a loop increase the complexity, and therefore the
time needed to perform the task. The same goes for complex controllers
and reading/writing data. If a larger interval is given, the more operations
can be completed within the loops duration. However, the converse is true;
specifically at high sampling rates, not everything can be completed in a
single loop and have to either be skipped or performed and exceed the desired
loop execution time. The sampling rates used in this analysis are increased
in magnitude until 10 kHz. A main metric used to quantify the amount of
jitter is the root-mean-square value of the jitter (RMS) which gives insight
into how the system is performing with respect to loop timing, defined as

TRMS =

√
1

n
(T 2

1 + T 2
2 + ...+ T 2

n) (3)

where Ti corresponds to the time taken to complete loop iteration i of the
code.

3.1 Comparison at 100 Hz

At this rate, the duration of a loop is desired to be 10 ms which is plenty to
perform all the tasks within the timed loop. The usage of a custom FPGA
is not noticeable at this sampling rate because if the loop is executed within
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Figure 4: Initiation of the custom FPGA and accessing the variables defined
in the FPGA Main Default (top). Bottom left is the function generator for a
1V reference. Above that is the calculation for jitter, using the timing of the
current loop and the previous. To the right is the controller, converting from
counts to volts and using the proportional constant K = 7. The two variables
ConnectorC/AI0 and ConnectorC/AO0 are defined within the FPGA.
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the desired duration, the timed loop will wait until the clock signals the
beginning of the next loop. Thus an increase in execution time is not useful
or necessary, as both jitter RMS values are 10000 µs. As seen in figure 5, the

Figure 5: The jitter of the timed loop with the custom FPGA and the default
personality at a sampling rate of 100Hz. Both configurations centered at
10000 µs, and have similar deviation.

jitter of both the default personality and the custom FPGA center around
the same value and visually have a similar deviation.

3.2 Comparison at 1 kHz

At a sampling rate of 1 kHz, the loop period is 1 ms which is still enough
for both the default personality and the custom FPGA to complete the code
within the loop. The only intensive process within the loop is plotting the
output of the RRC circuit and indexing both jitter and analog input for
plotting in Matlab. As seen in the figure 6, both jitter profiles are centered
around the same value with an RMS of 1000 µs for both.
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Figure 6: The jitter of the timed loop with the custom FPGA and the default
personality at a sampling rate of 1 kHz. Both configurations centered at 1000
µs, and have similar deviation.

3.3 Comparison at 10 kHz

At the 10 kHz sampling rate, this is where there is a noticeable improvement
between the two because the default personality cannot sample at 10 kHz
with the overhead associated with the default. The simplified FPGA project
succeeded in the fact that the loop execution time did not require the amount
of other functions shipped on the default personality. Looking at figure 7, the
FPGA jitter hovers around the 100 µs mark, where the default is noticeably
slower and appears to vary more. The RMS value for the default and custom
FPGA are 150.02 µs and 102.05 µs respectively.

4 Step Response

For looking at how the RRC circuit responds at different sampling rates,
the controller was set with a proportional constant K = 7, and only the
sampling frequency was changed. The proportional constant was chosen to
be this value to emphasize the instability of the system at low sampling rates.
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Figure 7: The jitter of the timed loop with the custom FPGA and the default
personality at a sampling rate of 10kHz. The default personality is not able to
execute the code within the loop before 100 µs., whereas the implementation
of the custom FPGA improves the performance of the loop, reducing the
amount of jitter.
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Figure 8: Step response of the RRC circuit under proportional control with
K = 7 at a sampling rate of 10 kHz for both the custom FGPA and default
Personality. At this sampling rate, the experimental data closely follows the
theoretical step response.

4.1 Sampling at 10kHz

Although the custom FPGA had less jitter than the default personality, both
kept the system stable. This is because at this sampling rate, the digital
implementation matches theory. That being said, there is a minor time shift
(phase shift) that can be seen between the two methods which is due to the
default personality not running the loop exactly at 100 µs.

4.2 Sampling at 1kHz

The 1 kHz sampling rate pretty closely follows the trend of the continuous
time model, but is more in line with the theoretical digital model. The custom
FPGA is slightly less phase shifted than the default personality, but as seen
by their RMS jitter both execute the code within the control loop within the
sampling period. The theoretical step response, given by the digital transfer
function most closely matches the data collected. This makes sense due to
the digital model being a sampled version of the data output by the RRC
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Figure 9: Step response of the RRC circuit under proportional control with
K = 7 at a sampling rate of 1 kHz for both the custom FGPA and default
Personality. At this sampling rate, the experimental data closely follows the
theoretical step response.

circuit, the same that is collected by the myRIO.

4.3 Sampling at 100Hz

At the 100 Hz sampling rate, the time between each sample spans 10 ms.
Considering the theoretical rise time of the closed loop system is approxi-
mately 3 ms, this should provide insight into the information received by the
controller (High/Low). The experimental data collected for the 100Hz sam-
pling rate oscillate back and forth between ±3.5V , never settling on a final
value as is expected by the step response. The theoretical model of the closed
loop digital system also goes unstable, this is because the infinite output of
the ideal controller and does not saturate so the response continuous blowing
up. At this sampling rate, the RRC circuit becomes unstable for both the
custom FPGA and the default personality.
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Figure 10: Step response of the RRC circuit under proportional control with
K = 7 at a sampling rate of 100Hz for both the custom FGPA and default
Personality. At this sampling rate, the system becomes unstable due to the
phase shift associated with the sampling rate.
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5 Instability from Sampling

Instability of the RRC circuit comes from the sampling rate of the digital
controller, as verified in the beginning of the report, in the continuous time
domain the system is stable for all gain K > 0. The discrepancy that causes
the ultimate instability of the 100 Hz sampling rate is derived from the phase
shift that accompanies sampling. Logically, this can be thought of similarly
with respect to the rise time of the RRC circuit. The rise time of the circuit
in closed loop is approximately 3 ms, and with a sampling rate of 100 Hz,
or 10 ms, results in no resolution of what is going on in the system. This is
why the controller saturates and outputs the max voltage either positive or
negative depending if the system is being read as high or low, as shown in
figure 10.

5.1 Phase Margin

Phase margin is useful in determining the stability of the system, similarly
to gain margin. As shown earlier, the gain margin of the RRC circuit closed
loop transfer function was infinite. However, the same cannot be said of the
phase margin of the system. The definition of phase margin is the point
of the cross-over frequency (frequency where the magnitude FRF crosses 0
dB) for the open-loop system. Additionally this frequency is a measure of
closed loop bandwidth which provides some insight into the phase shift of
a sampled system. Recall that a zero-order hold can be represented as the
following transfer function

G(s) =
1 − e−sTs

s
, (4)

for a sampling period of Ts and that exponential values of s are time delays
of Ts. The corresponding relation in the frequency domain is achieved by
plugging in s = jω.

G(jω) =
1 − e−jωTs

j
=
e−jωTs/2(ejωTs/2 − e−jωTs/2)

jω
(5)

Performing some simplifications with Euler’s formula yields the equation of

G(jω) =
2sin(ωTs/2)

ω
e−jωTs/2. (6)
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Figure 11: The bode plot of the loop transfer function for an RRC circuit
under proportional control with K = 7 at a sampling rate of 100 Hz. At
this sampling rate, the system becomes unstable due to the phase shift of
the system.

This relation proves the phase shift associated with sampling, because the
collection of data is a ZOH. The delay is seen in the exponential term, with
the −ωTs/2. On average, the phase shift associated with sampling is on the
order of half a sampling period and for the purposes of analysis the system
is evaluated at the estimated bandwidth of the system (ωcrossover).

In the case of the 100 Hz sampling rate, the system remains above the
crossover frequency from the bode plot (figure 11, but the phase of the system
crosses -180 degrees at a frequency of 314 rad/s. Phase margin is a measure
between -180 degrees and the closest point given by the phase curve. Here
there is no phase margin, and the resulting delay is excessive to the point
where the system becomes unstable as seen in figure 10. All systems have to
drop off at some point, meaning that the ωcrossover is pushed further to the
right, resulting in an even larger phase delay leading to the instability.
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6 Conclusion

The effects of sampling can be profound, as seen in the case of the 100 Hz
sampling rate. Not only can sampling make a system unstable, but the per-
formance is not always as anticipated which is where knowledge of digital
control is applicable. The reason for the RRC circuit going unstable at the
100 Hz sampling rate was due to the half phase shift associated with sam-
pling. For the case of the 1 kHz sampling, the results followed the general
trend of the continuous estimate but was better aligned with the digital ver-
sion predicted with a zero-order hold, which makes sense due to the digital
estimate being a sampled version of the output from the system (RRC cir-
cuit). The 10 kHz sampling rate is fast enough to the point of essentially
replicating a continuous time estimate for the circuit’s step response. If it is
truly important to achieve the correct sampling rate, jitter can be eliminated
by the use of a simplified FPGA over the default personality. The default
produced loop iterations with a RMS value of 150 µs, while the custom FPGA
was able to achieve a RMS of 102 µs.

A Code

A.1 Creating Plots

%--------------------------------------------------------------------------

%% Industrial Automation Lab 6 - FPGA

% Riley Kenyon 5/09/2019

%% Experimental Data

clear all; clc; close all;

%% Import Data

% FPGA

FPGAStep100 = csvread(’FPGAStep100.csv’);

FPGAStep1000 = csvread(’FPGAStep1000.csv’);

FPGAStep10000 = csvread(’FPGAStep10000.csv’);

FPGAjitter100 = csvread(’jitter100.csv’);

FPGAjitter1000 = csvread(’jitter1000.csv’);

FPGAjitter10000 = csvread(’jitter10000.csv’);
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% NORMAL

normalStep100 = csvread(’normalStep100.csv’);

normalStep1000 = csvread(’normalStep1000.csv’);

normalStep10000 = csvread(’normalStep10000.csv’);

normalJitter100 = csvread(’normalJitter100.csv’);

normalJitter1000 = csvread(’normalJitter1000.csv’);

normalJitter10000 = csvread(’normalJitter10000.csv’);

%% Theoretical Transfer Functions - RRC in Proportional Control [K]

% CONTINUOUS

R1 = 5100; % ohm

C1 = 2.2e-6; % uF

G = tf(1,[R1*C1 2]); % RRC

K = 7; % gain

CL = feedback(K*G,1);

% DIGITAL

Ts = [100e-6 1e-3 10e-3]; % 10kHz 1kHz 100Hz

Gz100 = c2d(G,Ts(1),’zoh’);

Gz1000 = c2d(G,Ts(2),’zoh’);

Gz10000 = c2d(G,Ts(3),’zoh’);

CLz100 = feedback(K*Gz100,1);

CLz1000 = feedback(K*Gz1000,1);

CLz10000 = feedback(K*Gz10000,1);

%% Plotting

figure(1)

hold on

plot(FPGAStep100(:,1),FPGAStep100(:,2),’b’,’LineWidth’,1.5);

plot(normalStep100(:,1),normalStep100(:,2),’r’,’LineWidth’,1.5);

step(CLz100);

step(CL);

xlim([0 0.02])

axes(’position’,[0.45 0.175 0.4 0.3])

box on

% index1 = 0.001<FPGAStep100(:,1) & FPGAStep100(:,1)< 0.002;

% index2 = 0.001<normalStep100(:,1) & normalStep100(:,1)< 0.002;

hold on

plot(FPGAStep100(:,1),FPGAStep100(:,2),’b’,’LineWidth’,1.5)
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plot(normalStep100(:,1),normalStep100(:,2),’r’,’LineWidth’,1.5)

step(CLz100);

step(CL);

xlim([0.001,0.003])

figure(2)

hold on

plot(FPGAStep1000(:,1),FPGAStep1000(:,2),’b’,’LineWidth’,1.5);

plot(normalStep1000(:,1),normalStep1000(:,2),’r’,’LineWidth’,1.5);

step(CLz1000);

step(CL);

xlim([0 0.02])

axes(’position’,[0.45 0.175 0.4 0.3])

box on

hold on

plot(FPGAStep1000(:,1),FPGAStep1000(:,2),’b’,’LineWidth’,1.5)

plot(normalStep1000(:,1),normalStep1000(:,2),’r’,’LineWidth’,1.5)

step(CLz1000);

step(CL);

xlim([0.001,0.003])

ylim([0.4 0.8])

figure(3)

hold on

plot(FPGAStep10000(:,1),FPGAStep10000(:,2));

plot(normalStep10000(:,1),normalStep10000(:,2));

step(CLz10000);

step(CL);

axis([0 0.05 -5 5]);

figure()

hold on

plot(FPGAjitter100);

plot(normalJitter100(3:end));

xlim([0 1000]);

legend(’FPGA’,’Default’);

fprintf("RMS FPGA jitter 100Hz : %0.3f \n",rms(FPGAjitter10000(2:300)));

fprintf("RMS Normal jitter 100Hz : %0.3f \n",rms(normalJitter10000(3:end)));
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figure()

hold on

plot(FPGAjitter1000(2:end));

plot(normalJitter1000(3:end));

xlim([0 1000]);

legend(’FPGA’,’Default’);

fprintf("RMS FPGA jitter 1kHz : %0.3f \n",rms(FPGAjitter1000(2:300)));

fprintf("RMS Normal jitter 1kHz : %0.3f \n",rms(normalJitter1000(3:303)));

figure()

hold on

plot(FPGAjitter10000(2:end));

plot(normalJitter10000(3:end));

xlim([0 300]);

legend(’FPGA’,’Default’);

fprintf("RMS FPGA jitter 10kHz : %0.3f \n",rms(FPGAjitter100(1:300)));

fprintf("RMS Normal jitter 10kHz : %0.3f \n",rms(normalJitter100(3:303)));

figure()

hold on

bode(7*G);

bode(7*Gz10000)
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A.2 LabVIEW Code
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