
Jitter and Timed Loop Performance

Riley Kenyon

May 9th, 2019

Abstract

This report describes the concept of ’Jitter’ and how it pertains to
timed loops, loop priority, and the effects on performance. Several loop
configurations are used to demonstrate how computational complexity
increases Jitter and what methods can be applied to limit it.

1 Introduction

Jitter is a measure of deviation from the periodicity of a signal. Although in
digital signals Jitter is not completely avoidable, it is important for control-
ling systems that the metric is bounded, meaning that it will reliably stay
within a certain range. Jitter is a quantification of determinism (or how con-
sistent certain timing events are), and is a measure of the difference between
an expected event and the actual event. The variation is due to a multi-
tude of factors including variation clock-cycle, and most notable code and
loop period. This analysis of Jitter in real-time systems on the NI myRIO
compares several different loop configurations in LabVIEW for performing
real-time proportional control.

2 Loop Timing

To provide an example of Jitter for context, the LabVIEW script in Figure
1 depicts a setup where an output pin of the myRIO is shifted between high
(1V) and low (0V) for every loop iteration (a period of 1 ms). This is achieved
in practive by taking the difference between the current clock-time (µs) and
the value for the previous iteration of the loop. Here it accomplished by a

1



Figure 1: Labview code for providing an example of Jitter, the function
generation occurs in the upper-left, where the value switches between zero
and 1. Jitter is measured by the microsecond tick-counter (bottom-left), and
the delay for the while loop is provided by the wait function (bottom-right).

shift register (the blue arrows on the left and right side of the loop in Figure
1). The analog output pin and ground are monitored with an oscilloscope to
visualize the frequency variation of the signal. The square-wave in Figure 2
is observed to have significant variation from the desired frequency, with an
average RMS (root mean square) value of 387 µs from the oscilloscope and
363 µs from the myRIO data, where RMS is defined in Equation 1 as

TRMS =

√
1

n
(T 2

1 + T 2
2 + ... + T 2

n), (1)

where n is the number of samples, and T is the period of the signal for each
loop iteration. This is a measurement of the average period produced by the
loop and can be compared against the expected value of the period (set loop
time of for code execution). The greater the discrepancy between the TRMS

and expected value, the more severe the Jitter.

3 Limiting Jitter

Factors that influence Jitter can be mitigated by simplifying the code within
the loop and decreasing memory intensive actions. To quantify how each

2



Figure 2: A square-wave produced by switching the analog output between
1V and 0V every loop iteration. Jitter is observed as a manifestation as the
variation in the period of the square-wave.

configuration compares to the others being tested, we will use the value of
TRMS and a ”maximum jitter” as it relates to the expected loop period.

3.1 Experimental Setup

The experiment was performed using a NI myRIO to perform real-time pro-
portional control of an RRC circuit. The RRC circuit, shown in Figure 3,
is an easy representation of a first-order system with a theoretical DC-gain
of 0.5. Although this experiment is centered around quantifying Jitter, the
controller is used to provide complexity to the loop. If operations within
the loop did not require substantial resources, variations in Jitter between
configurations would be less noticeable. The controller was connected to A0
(pins AGND and 0) on channel C to output analog voltage to the plant. The
myRIO receives analog input from AI (0+ and 0−) on channel C, see Figure
5 for the wiring schematic and Figure 4 for the physical circuit. The Labview
code is an implementation of a controller with proportional gain K, Figure
6 is the feedback loop showing how the myRIO is used with the physical
circuit.

3



−

+

Vin

R1

−

+

VoutC1R2

Figure 3: RRC Circuit - a simple first order system representation

Figure 4: The RRC circuit with values of R1 and R2 = 5kΩ, with a capacitor
value of 2.22 µF wired to the NI myRIO with red (AO0), white (AI0+),green
(AI0-), and blue (AGND)

4



Figure 5: The wiring diagram of the myRIO for proportional control of an
RRC circuit, using analog input and output.

K D/ACK G(s)

A/DC

R(s) e u Y (s)

−

Figure 6: Closed Loop Block Diagram of signal conversion between
myRIO(Blue) and input/output of circuit (Gray) using an digital to ana-
log converter(D/AC) and an analog to digital converter (A/DC).

5



3.2 LabVIEW Setup

The LabVIEW script makes use of a feedback node (or a shift register)
to measure the number of micro-second tics between loop iterations. The
number of micro-seconds provides insight into how accurately the loop is
executing a time specification. This is the data that is collected and analyzed
to determine Jitter. The RRC circuit is sampled at frequencies of 10kHz,
1kHz, 100Hz to provide the basis of how each configuration performs at a
variety of sampling rates. The number of samples used are 75000, 10000,
and 1000 respectively for each setting. The setting of the wait function delay
determines the rate at which it is sampled, for the subsequent timed loops, it
is a setting that is specified when setting up the loop. Function generation is
determined from the proportional constant K, set to K = 5 for this report,
and the difference between the reference voltage and the output of the circuit.
The frequency of the reference wave is determined by an input from the front
panel in terms of Hz, then converted to a time index (in terms number of loop
iterations at the tested frequency [100Hz, 1000Hz, 10000Hz]). To visualize
the proportional controller the error(e), reference(r), controller output(u),
and system output(y) are plotted. The data are indexed and saved to a csv
file, then transferred off the myRIO into Matlab.

4 While Loop

The while loop is the initial configuration tested to determine how repeatable
the timing of the loop timing. This is a loop without any techniques applied
to reduce Jitter, and provides a value to improve off for alternate configura-
tions. As seen in the code from Figure 7, all the plotting is performed within
the loop and the only timing portion of the configuration is dictated by the
’wait’ command (number of milliseconds).The feedback node is used instead
of the shift register for simplicity in the loop but performs the same function
of calculating Jitter based on a microsecond clock. The logic for function
generation is the same, but with a control from the front panel dictating
frequency of the square-wave reference. The proportional control occurs by
subtracting plant output (y) from the reference voltage (r) and multiplying
by a constant also given by the front panel. The Jitter performance TRMS for
the while loop is approximately accurate at the sampling rates of 100Hz and
1000Hz. However, as the timer get to the 10kHz sampling rate, the while

6



Figure 7: The Labview code for the while loop configuration, all of the plots
are internal to the loop and is similar to the code for the initial test.

Frequency (Hz) Jitter (TRMS) Max Deviation(µs)
100 10246 10613
1000 1331 3676
10000 274 4710

Figure 8: The Jitter analysis of the while loop, notice that 10kHz (100µs)
sampling frequency provides substantial deviation from the desired frequency
due to the impossible time to complete the code within that given interval

loop cannot perform all the operations within the time span given. Addition-
ally, the input of the wait command is blue(long) and not orange(double) so
the method of timing in between loops in unreliable.

5 Timed Loop

The timed loop configuration utilizes the real-time toolbox of the NI myRIO,
and replaces the while loop with a timed version. Changing the setup of the
loop to use the micro-second clock allows for better timing of the controller.
The improvement over the while loop is substantial, and converges to the
expected time delays between loops for the 100Hz and 1000Hz sampling

7



Figure 9: The Labview code for the timed loop configuration, the timing of
each loop is based off a micro-second clock (upper-left tab), eliminating the
need of the wait function from the while loop.

rates. The improvement is also seen in the 10kHz sampling rate, where the
time average TRMS = 174µs. All of the plotting still occurs within the loop,
and indexes the Jitter data to save to a .csv file.

6 Plotting Externally

The next configuration takes all plotting out of the timed loop. This allows
for the loop to not perform intensive operations such as real-time plotting.
The average Jitter period TRMS = 195µs for the 10kHz sampling rate. The

Frequency (Hz) Jitter (TRMS) Max Deviation (µs)
100 10000 10046
1000 1000 1040
10000 174 4223

Figure 10: The Jitter analysis of the timed loop, notice the improvement in
the execution time of the 10kHz sampling frequency. The other sampling
rates still converge to their expected loop period.

8



Figure 11: The Labview code for the external plotting configuration, the
timing of each loop is still based off a micro-second clock (upper-left tab)
but the computation of plotting real-time is eliminated and replaced with
the cost of indexing an array to store the data of the plots.

other sampling rates also converged to their expected values for 100Hz and
1000Hz. It is important to note that likely the reason for a greater average
value at the highest sampling frequency is due to the allocating of data
to an array. The data continually gets added on to the same array as time
progresses, considering how high the sampling rate is, the amount of memory
needed to store all the information increases quickly. This is why there
are spikes seen at specific intervals, when the size of the array needs to be
increased, this results in a larger loop period for that specific iteration.

7 Separate While Loop

Another method of decreasing Jitter is to create different priority loops. For
this, a while loop is implemented to take care of all of the ’psuedo real-time’
plotting. Global variables are written to at each iteration of the main timed
loop, and then read in the while loop at a lower priority. This implies that
if the loop has enough time left before starting the next iteration, it will

9



Frequency (Hz) Jitter (TRMS) Max Deviation (µs)
100 10000 10043
1000 1000 1031
10000 195 9639

Figure 12: The Jitter analysis of the external plotting configuration. The
execution time of the 10kHz sampling rate increased from the timed loop,
likely due to the amount of array assignment needed to hold the plot data
from several sources (r,e,u,y), the maximum deviation occurs at the end of
the data.

plot the variables in the lower priority loop. Although the plots are not
exactly representative of what is going on with the proportional controller,
it provides some insight into how the system is performing without waiting
until the end of the program or sacrificing loop time. The caviat of this
configuration is similar to the external plotting, as it requires the usage of
global variables that are memory intensive. The performance with sampling
rates of 100Hz and 1000Hz are the same as in previous timed loops, the TRMS

is equal to the expected loop time (10000 µs and 1000 µs respectively. As for
the higher sampling frequency of 10kHz, the system performed better than
the while loop, but worse than the only timed loop and the external plotting
configurations. This is likely because of the usage of global variables for
plotting, which is more intensive than indexing an array or simply plotting
within the loop.

8 Effects of Sampling Rate

As seen in Figure 15 and 16, the performance for 100Hz and 1000Hz sampling
was increased greatly by the use of timed loops. The average value of all
configurations except the while loop achieved an RMS value equal to the
expected execution time of the loop. The high sampling frequency of 10kHz
was enough to cause inaccuracy for loop period. At this rate, it is impossible
to execute the code within the set time even with the implementation of
a timed loop. Specifically for all the examples where indexing was used to
keep track of the elements of an array, timing was progressively worse when
the length of the array continued increasing. In this range, timed loop still
out performed the priority setting likely due to the use of global variables

10



Figure 13: The Labview code for the use of priority loops for plotting ’psuedo
real-time’, main loop is timed and is used for the proportional control of the
circuit using the same logic as previous iterations. Instead of directly plotting
the variables, the value is saved to a global variable and used in the while
loop beneath to plot when there is excess time after performing the main
function of the timed loop.

11



Frequency (Hz) Jitter (TRMS) Max Deviation
100 10000 10026
1000 1000 1039
10000 210 4354

Figure 14: The Jitter analysis of priority loops, with the primary loop per-
forming the computation for proportional control and saving values to a
global variable. The secondary loop is a while loop that provides ’psuedo
real-time plotting’ of the control loop.

(writing to and reading from) but graphically both appear to act similarly.
External plotting was better for lower sampling frequencies, at the rate of
10kHz the arrays become large quickly and require resources that end up
increasing the execution time of the loop.

9 Conclusion

Ensuring that Jitter is bounded is important for real-time control systems.
For example, if the time it takes to execute a loop is considerably longer
than the expected time for a loop, the system will be exposed to the con-
troller’s output for a longer duration. This can result in overshoot or becom-
ing momentarily unresponsive to reference signals. As seen using the methods
above, the amount of Jitter in a loop of code can be mitigated using a timed
loops, varying priority loops, and externally plotting (due to being less mem-
ory intensive). For saving data, the array will become large enough to the
point where it is resized, resulting in a ”spike” in Jitter to expand the array.
This was seen extensively in the external plotting configuration of the loop
where multiple variables had to be indexed and plotted after the code was
stopped. The amount of resources necessary to hold all the data were seen
in the plot of the the 10kHz sampling rate. Although Jitter is unavoidable in
digital systems based off clock cycles, timing methods can be implemented to
decreased the bounds of Jitter and reducing the amount of plotting decreases
the computational expense. This is specifically applicable to high sampling
frequencies, at lower sampling frequencies a timed loop may be all that is
necessary to bring the system within acceptable bounds.

12



Figure 15: The Jitter resulting from a sampling rate of 100Hz, notice that
graphing externally results in a band closer to the desired execution time of
100 µs.

13



Figure 16: The Jitter resulting from a sampling rate of 1000Hz, notice that
graphing externally results in a band closer to the desired execution time of
1000 µs.

14



Figure 17: The Jitter resulting from a sampling rate of 10kHz, as the number
of samples increases over the course of the script, arrays holding the previous
loop iterations of data increase significantly resulting in a greater execution
time.

15



A Code

A.1 Creating Plots

%--------------------------------------------------------------------------

%% Industrial Automation Lab 4 - Jitter

% Riley Kenyon 4/9/2019

%--------------------------------------------------------------------------

clear all; close all; clc;

%% Example of Jitter

oscilloscope_100 = csvread(’jitter100.csv’,3,0);

%oscilloscope_100(:,1) = oscilloscope_100(:,1) + oscilloscope_100(1,1);

num = 0;

temp = 0;

sum = 0;

j = 1;

% Finding oscilloscope vs myRIO data

for i = 2:length(oscilloscope_100(:,1))

if oscilloscope_100(i,2) < 0.5 && oscilloscope_100(i-1,2) > 0.5

temp1 = oscilloscope_100(i,1);

if temp ~= 0

num = num+ 1;

disp(temp1-temp)

diff(j) = temp1-temp;

j = j+1;

end

temp = temp1;

elseif oscilloscope_100(i,2) > 0.5 && oscilloscope_100(i-1,2) < 0.5

temp1 = oscilloscope_100(i,1);

if temp ~= 0

num = num+1;

disp(temp1-temp)

diff(j) = temp1-temp;

j = j+1;

end

temp = temp1;

end

end

16



RMS.Theoretical = rms(diff);

oscilloscope_jitter = csvread(’OscilloscopeJitter_100.csv’,100000); %set towards end of data

RMS.oscilloscope = rms(oscilloscope_jitter);

fprintf("%4.0f \n",RMS.oscilloscope);

[pk,index] = findpeaks(oscilloscope_100(:,2));

figure()

plot(oscilloscope_100(:,1),oscilloscope_100(:,2));

%xlim([0,0.025]);

xlabel(’Time (s)’);

ylabel(’Volts (V)’);

%% While Loop configuration

WhileLoop_0 = csvread(’whileJitter_0.csv’,2); % "0" millisecond delay

WhileLoop_0 = WhileLoop_0(1:10000);

WhileLoop_100 = csvread(’whileJitter_100.csv’,2); % "0.1" millisecond delay

WhileLoop_100 = WhileLoop_100(1:75000);

WhileLoop_1000 = csvread(’whileJitter_1000.csv’,2); % 1 millisecond delay

WhileLoop_1000 = WhileLoop_1000(1:10000);

WhileLoop_10000 = csvread(’whileJitter_10000.csv’,2);

WhileLoop_10000 = WhileLoop_10000(1:1000);

RMS.WhileLoop(1) = rms(WhileLoop_0);

RMS.WhileLoop(2) = rms(WhileLoop_100);

MAX.WhileLoop(1) = max(WhileLoop_100);

RMS.WhileLoop(3) = rms(WhileLoop_1000);

MAX.WhileLoop(2) = max(WhileLoop_1000);

RMS.WhileLoop(4) = rms(WhileLoop_10000);

MAX.WhileLoop(3) = max(WhileLoop_10000);

fprintf("While Loop RMS\n------------------------\n");

fprintf("T_s = 0 us: %4.0f\n ",RMS.WhileLoop(1));

fprintf("T_s = 100 us: %4.0f %4.0f \n",RMS.WhileLoop(2),MAX.WhileLoop(1));

fprintf("T_s = 1000 us: %4.0f %4.0f \n",RMS.WhileLoop(3),MAX.WhileLoop(2));

fprintf("T_s = 10000 us: %4.0f %4.0f \n",RMS.WhileLoop(4),MAX.WhileLoop(3));

%% Timed Loop Configuration

TimedLoop_100 = csvread("TimedJitter_100.csv",2);

TimedLoop_100 = TimedLoop_100(1:75000);

TimedLoop_1000 = csvread("TimedJitter_1000.csv",2);

TimedLoop_1000 = TimedLoop_1000(1:10000);

TimedLoop_10000 = csvread("TimedJitter_10000.csv",2);

17



TimedLoop_10000 = TimedLoop_10000(1:1000);

RMS.TimedLoop(1) = rms(TimedLoop_100);

RMS.TimedLoop(2) = rms(TimedLoop_1000);

RMS.TimedLoop(3) = rms(TimedLoop_10000);

MAX.TimedLoop(1) = max(TimedLoop_100);

MAX.TimedLoop(2) = max(TimedLoop_1000);

MAX.TimedLoop(3) = max(TimedLoop_10000);

fprintf("\nTimed Loop RMS\n------------------------\n");

fprintf("T_s = 100 us: %4.0f %4.0f\n",RMS.TimedLoop(1),MAX.TimedLoop(1));

fprintf("T_s = 1000 us: %4.0f %4.0f\n",RMS.TimedLoop(2),MAX.TimedLoop(2));

fprintf("T_s = 10000 us: %4.0f %4.0f\n",RMS.TimedLoop(3),MAX.TimedLoop(3));

%% Moved Graph Configuration

GraphedLoop_100 = csvread("GraphedJitter_100.csv",2);

GraphedLoop_100 = GraphedLoop_100(1:75000);

GraphedLoop_1000 = csvread("GraphedJitter_1000.csv",2);

GraphedLoop_1000 = GraphedLoop_1000(1:10000);

GraphedLoop_10000 = csvread("GraphedJitter_10000.csv",2);

GraphedLoop_10000 = GraphedLoop_10000(1:1000);

RMS.GraphedLoop(1) = rms(GraphedLoop_100);

RMS.GraphedLoop(2) = rms(GraphedLoop_1000);

RMS.GraphedLoop(3) = rms(GraphedLoop_10000);

MAX.GraphedLoop(1) = max(GraphedLoop_100);

MAX.GraphedLoop(2) = max(GraphedLoop_1000);

MAX.GraphedLoop(3) = max(GraphedLoop_10000);

fprintf("\nMoved Graphs RMS\n------------------------\n");

fprintf("T_s = 100 us: %4.0f %4.0f\n",RMS.GraphedLoop(1),MAX.GraphedLoop(1));

fprintf("T_s = 1000 us: %4.0f %4.0f\n",RMS.GraphedLoop(2),MAX.GraphedLoop(2));

fprintf("T_s = 10000 us: %4.0f %4.0f\n",RMS.GraphedLoop(3),MAX.GraphedLoop(3));

%% Priority Loops and Local Variables

PriorityLoop_100 = csvread("Priority_100.csv",2);

PriorityLoop_100 = PriorityLoop_100(1:75000);

PriorityLoop_1000 = csvread("Priority_1000.csv",2);

PriorityLoop_1000 = PriorityLoop_1000(1:10000);

PriorityLoop_10000 = csvread("Priority_10000.csv",2);

PriorityLoop_10000 = PriorityLoop_10000(1:1000);

RMS.PriorityLoop(1) = rms(PriorityLoop_100);

18



RMS.PriorityLoop(2) = rms(PriorityLoop_1000);

RMS.PriorityLoop(3) = rms(PriorityLoop_10000);

MAX.PriorityLoop(1) = max(PriorityLoop_100);

MAX.PriorityLoop(2) = max(PriorityLoop_1000);

MAX.PriorityLoop(3) = max(PriorityLoop_10000);

fprintf("\nPriority Loops RMS\n------------------------\n");

fprintf("T_s = 100 us: %4.0f %4.0f\n",RMS.PriorityLoop(1),MAX.PriorityLoop(1));

fprintf("T_s = 1000 us: %4.0f %4.0f\n",RMS.PriorityLoop(2),MAX.PriorityLoop(2));

fprintf("T_s = 10000 us: %4.0f %4.0f\n",RMS.PriorityLoop(3),MAX.PriorityLoop(3));

%% Graphical Representation of each

figure()

subplot(2,2,1); plot(WhileLoop_100,’b’);title("While Loop");ylabel("Execution Time (\mus)");xlabel("Loop Index");

subplot(2,2,2); plot(TimedLoop_100,’k’);title("Timed Loop");ylabel("Execution Time (\mus)");xlabel("Loop Index");

subplot(2,2,3); plot(GraphedLoop_100,’r’);title("External Plotting");ylabel("Execution Time (\mus)");xlabel("Loop Index");

subplot(2,2,4); plot(PriorityLoop_100,’g’);title("Priority Loop");ylabel("Execution Time (\mus)");xlabel("Loop Index");

figure()

subplot(2,2,1); plot(WhileLoop_1000,’b’);title("While Loop");ylabel("Execution Time (\mus)");xlabel("Loop Index");

subplot(2,2,2); plot(TimedLoop_1000,’k’);title("Timed Loop");ylabel("Execution Time (\mus)");xlabel("Loop Index");

subplot(2,2,3); plot(GraphedLoop_1000,’r’);title("External Graphs");ylabel("Execution Time (\mus)");xlabel("Loop Index");

subplot(2,2,4); plot(PriorityLoop_1000,’g’);title("Priority Loop");ylabel("Execution Time (\mus)");xlabel("Loop Index");

figure()

title("10000 Microseconds");

subplot(2,2,1); plot(WhileLoop_10000,’b’);title("While Loop");ylabel("Execution Time (\mus)");xlabel("Loop Index");

subplot(2,2,2); plot(TimedLoop_10000,’k’);title("Timed Loop");ylabel("Execution Time (\mus)");xlabel("Loop Index");

subplot(2,2,3); plot(GraphedLoop_10000,’r’);title("External Graphs");ylabel("Execution Time (\mus)");xlabel("Loop Index");

subplot(2,2,4); plot(PriorityLoop_10000,’g’);title("Priority Loop");ylabel("Execution Time (\mus)");xlabel("Loop Index");

19


