
Sampling and Reconstruction

Riley Kenyon

March 14th, 2019

Abstract

This report describes the Shannon Sampling Theorem and how its
properties can be applied to the Nyquist frequency using a sample
signal. Signal aliasing can be attributed to sampling and reconstruc-
tion, which will be proven with an example signal in combination with
different filters for convolution.

1 Introduction

Due to advancing technologies, electronics have advanced to the point where
computers can control systems using digital methods. Digital processing is
necessary due to a handful of components such as analog-to-digital converters
and the converse. Although that equipment plays a major role in phase lag
and the resolution of a signal, a lot of adjustment in the theory behind a
digital controller comes from discrete sampling of an input.

1.1 Sampling and the Comb Function

Take a continuous function x(t) for example, the sampling rate of this system
is ’infinite’. In order to do digital processing and real-time digital control,
the continuous function is sampled at an interval Ts, or the time between
adjacent sampled points x[k] and x[k− 1]. To represent the sampled data as
a continuous function, the comb function

δTs(t) =
∞∑

k=−∞
δ(t− kTs), (1)

1



Figure 1: A continuous function being sampled at discrete intervals Ts = 0.17
s, the sampling property of the comb function allows for the sampling.

is used to define the relationship between indexed data and the continuous
representation of the sample. The sampling property of the dirac-delta func-
tion establishes this relationship because it evaluates a function f(t) at the
offset of the delta function. For example, at a delta function offset of a the
function will be evaluated f(a).∫ ∞

−∞
f(t)δ(t− a)dt = f(a) (2)

The governing equation that describes the sampling signal x∗(t) as it relates
to the continuous function x(t) can be shown to be

x∗(t) = x(t) ∗ δTs(t) =
∞∑

k=−∞
x(t)δ(t− kTs), (3)

where the delta functions are spaced apart at an interval of Ts. Note that
the operation occurring with x(t) and δTs is their convolution.The equation
is visualized in Figure 1 with an example continuous function x(t).

2



1.2 Frequency Representation

The frequency representation of discrete signals is where things get inter-
esting. A function that is discrete in the time domain is periodic in the
frequency domain. This can be shown by looking at the Fourier Series of the
signal x∗(t). First, the Fourier Transform of the comb function is defined as

∞∑
k=−∞

δ(t− kTs) =
∞∑

N=−∞
CN · ej(

2π
Ts
N)t, (4)

where CN are the Fourier coefficients which are derived by the synthesis
equation,

CN =
1

Ts

∫ T/2

−T/2

∞∑
k=−∞

δ(t− kTs) · ej(
2π
Ts
N)t =

1

Ts
. (5)

Evaluating this over one period eliminates the summation of k because the
only element that exist within that range is k = 0. Using the sampling
property of the delta function(evaluating the exponential at a value of t = 0)
the Fourier coefficients simplify to CN = 1/Ts. The next step is to take the
Laplace transform of the function x∗(t), by definition the Laplace Transform
is equal to the following relation

L {x∗(t)} = X∗(s) =
∫ ∞
−∞

x∗(τ) · e−sτdτ. (6)

By plugging in the definition of x∗(t), with the value of the comb function
obtained in equation 4 the relation can be simplified to

L {x∗(t)} =
1

Ts

∞∑
N=−∞

∫ ∞
−∞

x(τ) · e−(s−jNωs)τdτ, (7)

where ωs = 2π
Ts

is the sampling rate. Notice that the form is the same as
equation 6 with s = s− jNωs meaning the final representation evaluated at
s = jω can be displayed as

X∗(jω) =
1

Ts

∞∑
N=−∞

X(j(ω −Nωs)). (8)

This gives validity to the statement that a signal which is discrete in time
is periodic in frequency (the continuous Fourier Transform is picked up and
shifted to the left and right by ωs. Another way to look at is is the function
has a period of ωs.

3



‘ ω-ω0 ω0 ωs

X(jω)

Figure 2: An example Fourier Transform with max frequency content ω0,
and a low-pass filter with cutoff frequency of ωs/2.

1.3 Reconstruction and Aliasing

The relation obtained in equation 8 also provides intuition to reconstruction
and aliasing. The frequency content contained by signal x(t) is bounded by
ω0, the max frequency content. This is visualized with the two scenarios, in
Figure 2 the sampling frequency is greater than 2ω0 and Figure 3 where the
sampling frequency is less than 2ω0 and aliasing occurs.

After sampling a signal, the points need to be reconstructed to create a
function. In order to make the sampled points appear like a continuous signal,
the frequency content needs to be passed through a low-pass filter. Figure
2 shows that the frequency content remaining within the low-pass filter is
identical to the initial function’s frequency content. Under the constraint
that ωs > 2ω0, the reconstructed signal xR(t) will be the same as x(t) when
a perfect low-pass filter is used. However, if the sampling rate is less than
twice the max frequency content or a non-ideal filter is used to process the
sampled signal - aliasing can occur. The metric used to quantify this relation
is know as the Nyquist frequency, defined as

ωn =
ωs
2
> ω0. (9)

Looking at the first of the possible problems, as seen in Figure 3 the
overlapping frequency content will superimpose and create the profile of a
different signal, even if an ideal filter is used. Upon reconstruction the signal
will be different, or an ’alias’.

4



‘ ω-ω0 ω0

X(jω)

Figure 3: An example Fourier Transform with max frequency content ω0,
and a overlapping frequency signatures due to a poor sampling rate ωs.

2 Example Signal

To exemplify the theory mentioned in the previous section, an example signal
will be sampled at several frequencies and then reconstructed using varying
types of filters. The function used throughout the process is

x(t) = sin(2πt) + 0.2cos(12πt), (10)

where the frequency content of the signal is discrete, with the max frequency
ω0 = 12π. The other frequency occurs at ω = 2π. The frequency content
can be used later to predict an alias at a specific sampling frequency.

2.1 Building the signal

In order to do this, we will be constructing a signal in Matlab. Due to there
not being continuous signals available for simulation, the step-size between
points will be minimized to where the signal can be approximated as con-
tinuous. The step size used in this account is DT = 0.0001, spanning the
range of −20 < t < 20. At this resolution, the computational needs are not
excessive while still achieving the continuous appearance of the function.

2.2 Discretizing the signal

Another work around is performing the numerical convolution needed to
reconstruct the sampled signal. The pulse response of the low pass filter is
used in convolution with the sampled signal x∗(t), and is created at the same

5



time interval as the pseudo-continuous function created in Matlab describing
equation 10. A caveat to still having discrete points is to make the sampled
signal a vector of the same length as the pseudo-continuous function, but with
zeros at any point that does not coincide with the time-increment that was
sampled. The ramifications of this is that instead of specifying an interval,
the time between points will be a multiple of the initial frequency. For
example sampling at a Ts = 0.017 requires a Ns = 170 because of the initial
DT = 0.0001, and a Ts = 0.17 requires a Ns = 1700.

3 Reconstruction

In the ideal reconstruction of the signal xR(t), the function will identically
represent the sampled function x(t). Because a discrete signal is periodic
in the frequency domain, the frequency content will be cropped when the
convolution is performed with the signal and a low-pass filter. The content
within the filter will be preserved while the rest of the periodic signal will be
chopped, leaving the frequency profile of a continuous signal. The ideal low
pass filter (ILP) can be used for an exact result. However, this filter, as seen
in the next section is non-causal and not realizable in a physical sense. The
alternatives are different types of low pass filters: zero-order hold, first-order
hold (also non-causal), and predictive first-order hold. The first order hold
is also non-causal but is not infinite, so it can be implemented after data
have been collected. These filters are implemented with convolution here,
but likely the zero-order hold suffices in real-time control and updates its
value once the the next data point is received.

3.1 Ideal Low-Pass Filter (ILP)

The ideal low-pass filter as seen in Figure 4, is equal to

h(t) = sinc(
ωst

2
) =

sin(ωst/2)

ωst/2
. (11)

This is the result of the inverse Fourier Transform of the top-hat needed in
the frequency domain. The cutoff of this filter needs to be at a frequency
that is greater than ω0 but less than ωs − ω0. The default value is ωs/2 as
seen in equation 11.

6



Figure 4: The time domain representation of the ideal low-pass filter, with a
cutoff frequency corresponding to Ts = 0.017s.

As seen in Figure 5, the reconstruction of the sampled data perfectly
recreate the continuous signal for the higher sampling rate. Due to the
fact that the data taken by the sampling rate is not of infinite length, the
reconstruction can vary at the end points. The plot seen in Figure 5 has
data spanning the time scale of [-20,20], because the span is much greater
than the range shown, the end points can be assumed to be at negative and
positive infinity. Looking at the other sampling rate Ts = 0.17 s, the nyquist
frequency is not great enough and reconstruction produces aliasing. This will
be true for all the other low pass-filters upon reconstruction with the lower
sampling rate.

3.1.1 Aliasing due to sampling

The ideal low-pass filter gives the best insight into how different sampling
rates affect aliasing because it perfectly constructs whatever signal was sam-
pled. In the case of this analysis, the max frequency content of the signal is
equal to ω0 = 37.69, while the sampling rates of Ts = 0.17 s and Ts = 0.017
s correspond to frequencies of ωs = 36.96 and ωs = 369.6. According to

7



Figure 5: The reconstruction of the sampled data with Ts = 0.017s and
Ts = 0.17s, and the comparison to the original function. The ideal low-pass
filter perfectly recreates the initial function for the higher sampling rate.

8



Figure 6: The predicted alias of the function with too low of a sampling
rate Ts = 0.17s, this resulted in frequency folding and a slower oscillating
waveform at a frequency of ω = 0.739.

Nyquist (9) if the sampling rate is not greater than twice the max frequency
content, aliasing will occur.

For our Ts = 0.017 s, it is sampling at nearly ten times the max frequency
content, where Ts = 0.17 s does not. An estimate can be made to what the
frequency of the aliased signal will be, because the only two frequencies in
this signal are the ω = 2π and the max frequency. Frequency folding is where
the initial frequency content is shifted from it’s initial location by multiples of
ωs, the frequency ω0 will shift to the left by ωs which results in a frequency of
ω = 0.739, which is a T = 8.5 s. In Figure 6, the prediction directly overlaps
on the reconstructed signal, confirming the estimated alias due to too low of
a sampling rate.

3.2 Zero-Order Hold (ZOH)

The zero order hold is another implementation of a low pass filter. The filter
is causal and simple to implement in real-time control due to it holding the
current sampled value until the next one is obtained. The zero-order hold is

9



Figure 7: The zero-order hold the current sample value until the next point
where it then updates.

arguably the simplest form of reconstruction, and is easiest to implement in
code because the value is held constant between point to point. For many
control applications this form of reconstruction is adequate and does not add
complexity. The pulse response of the zero-order hold looks like Figure 7
which models how the sampled points will be reconstructed.

The convolution of the function x∗(t) (the continuous representation of
the discrete data) with the pulse response of the zero-order hold creates a
function that is displayed in Figure 8. For the higher sampling rate, with
Ts = 0.017 the reconstruction follows the shape of the initial function x(t). As
mentioned previously, the reconstruction with the lower sampling produces
aliasing, which can clearly be seen in the lower plot of Figure 8.

3.3 First-Order Hold (FOH)

The first order hold is non-causal meaning that it needs ’negative’ time in
order to work, luckily because this reconstruction is not being performed real-
time we have all the data needed to use this method. The pulse response of
the FOH uses the information of the future points to interpolate it’s position.

10



Figure 8: The reconstruction of the sampled data with Ts = 0.017s and
Ts = 0.17s, and the comparison to the original function. The zero-order hold
holds the current sample value until the next point where it then updates.

11



Figure 9: The model of a first order hold, with a sampling rate of Ts = 0.017s,
it is a model of connecting data directly from the previous value to the next
sample in the shortest distance.

This is the equivalent of drawing a line in between adjacent points, Figure 9
shows the pulse response h(t).

The first order hold is the next best in terms of reconstructing the exact
signal x(t), like the ideal low-pass filter it is also non causal as can be seen
in the pulse response. There is a negative time component to the model,
meaning that it requires the next point to determine how to connect the
points. As seen in the reconstruction, Figure 8, the reconstruction seems to
follow the line very precisely. The lower plot shows the process of connecting
points better, the points are taken at a larger Ts producing an aliased signal
but showing the method of reconstruction more clearly.

3.4 Predictive First-Order Hold (PFOH)

The predictive first-order hold is a real-time implementation of the FOH,
where it takes the previous sample x[k − 1] and the current sample x[k],
and makes a prediction based off the slope to what the next point will be.
If the function is a slow changing or the sampling rate is very high this

12



Figure 10: The reconstruction of the sampled data with Ts = 0.017s and
Ts = 0.17s, and the comparison to the original function. The first-order hold
is non-causal and interpolates the current sample value to the next point.
At this resolution, the FOH looks approximately like the ILP for the higher
sampling rate.

13



Figure 11: The model of a predictive first order hold, with a causal filter,
with a sampling rate of Ts = 0.017s. It is a model of predicting the value of
the next sample based off the slope from the previous sample and the current
sample.

approximation is a good estimate, however for quickly changing functions this
method will create sharp spikes at certain points along the reconstruction.

3.4.1 Derivation

The element-wise representation of the predictive first order hold is

x[k + 1] = x[k] +
x[k]− x[k − 1]

Ts
t, (12)

where Ts is the sampling rate and t is the variable that is interpolating
between adjacent points. To visualize this, the function δ[k] (amplitude of
1 at k = 0, and 0 otherwise) is plotted and then used with the PFOH. The
time between index [k] and [k + 1] is Ts, The slope is then 1/Ts between
points k = 0 and k = 1, then between points k = 1 and k = 2 the slope is

14



Figure 12: The reconstruction of the sampled data with Ts = 0.017s and
Ts = 0.17s, and the comparison to the original function. The predictive first-
order hold is causal, and uses information from the previous point and the
current point to make an estimate for the next sample.

15



−1/Ts. The resulting equation for the model of the first order hold is

h(t) =


1 + t/Ts 0 ≤ t < Ts
−t/Ts Ts ≤ t < 2Ts
0 else

(13)

The predictive first-order hold model h(t) is visualized in Figure 11, with the
convolution with the sampled data shown in Figure 12.

4 Frequency-Response Function (FRF)

The Frequency-Response Function of the zero-order hold can be derived by
taking the Fourier Transform of the pulse response h(t). The magnitude
plot of the FRF provides some insight into the performance of the zero-order
hold, as it compares to the ideal low-pass filter. The ideal low-pass filter has
a cutoff frequency of ωs/2, with an immediate drop to zero after that point.
The ZOH on the other hand is not as sharp, the Fourier Transform of the
zero order hold can be derived from the Laplace transform and plugging in
s = jω. The result of which is the absolute value of the sync function. Notice
the duality - the square top-hat in the frequency domain is the sinc function
in the time domain, and visa versa for the ZOH. In terms of performance,
the ideal low-pass filter cuts exactly at the cutoff frequency where the zero-
order hold dies fairly quickly and reverberates back and forth which not only
attenuates some of the frequencies that are supposed to be kept but can let
in higher frequency noise.

5 Conclusion

The intuitions gained of the Shannon Sampling Theorem are incredibly useful
in discrete signal processing. Reconstruction is a major part of understanding
the sampled points gathered from an ADC in real-time or when using a
DAQ and doing post-processing. The theory behind sampling a continuous
function can be attributed to the comb function and the basis of the Shannon
Sampling Theorem is built off of the Fourier Transform of the continuous
representation of the sampled signal. Recall from the beginning of the report
that aliasing can occur when the sampling frequency is not high enough,
specifically if it is less than the nyquist frequency. The nyquist frequency (9)

16



Figure 13: The frequency response function of the ideal low-pass filter (ILP)
and the zero-order hold (ZOH) for a sampling frequency of ωs = 369.6 Rad/s.

17



is equal to twice the highest frequency content of the signal, and this was
proven by looking at the frequency content of a sampled signal. A sampled
signal (discrete in the time domain) is periodic in the frequency domain,
and the distance the signal content is apart is the sampling frequency ωs. If
overlap occurs, then the amplitudes will super impose, creating a different
signature. Even with an ideal low-pass filter, at this point the reconstructed
signal is an alias. However, when sampling at higher frequencies, aliasing
can still occur upon reconstruction because the perfect low-pass filter is not
realizable or causal. Instead, another method of reconstruction will likely be
used, for many control applications a zero-order hold is acceptable. As seen
from the frequency response function of the zero-order hold, the filter still
lets signals through at higher frequencies and attenuates portions that are
still within the cutoff. Additionally, if the cutoff frequency of the low-pass
filter is too high and the sampling rate sufficient the shifted frequency content
could not be cut out entirely. A standard for the filter is a cutoff frequency
of ws/2. Using these fundamental principals, sampling rates can be chosen
carefully to avoid aliasing and aid in reconstruction of the signal.

A Code

A.1 Creating Plots

%% Lab03 - reconstruction

% Riley Kenyon

% 3/14/2019

%----------------------------------------------------------------------

%% Industrial Automation Lab 3 - Convolution

% Riley Kenyon 3/7/2019

%--------------------------------------------------------------------------

clear all; close all; clc;

% Actual function

DT = 0.0001;

t = -20:DT:20;

t1 =[-20.06:0.017:20.06]; % For T_s = 0.017

t2 = [-20.06:0.17:20.06]; % For T_s = 0.17

% Example function for Reconstruction and Convolution

18



funct = @(t) sin(2*pi*t) + 0.2*cos(12*pi*t);

ILP = @(t,T_s) sinc(t/T_s); % sinc is sin(pi*t)/(pi*t)

alias = @(t) sin(2*pi*t) + 0.2*cos(0.739*t);

% Sampling Time: T_s = 0.017

%--------------------------------------------------------------------------

[t_017, x_017] = sample(t1,funct); % Now has interval of DT with data at T_s

ILP_017 = ILP(t,0.017); % Impulse ILP of function with T_s = 0.017, and at interval DT

ZOH_017 = ZOH(t,0.017); % Impulse ZOH

FOH_017 = FOH(t,0.017); % Impulse FOH

PFOH_017 = PFOH(t,0.017); % Impulse PFOH

% Convolution of filters with signal

y_ILP_017 = conv(ILP_017,x_017,’same’);

y_ZOH_017 = conv(ZOH_017,x_017,’same’);

y_FOH_017 = conv(FOH_017,x_017,’same’);

y_PFOH_017 = conv(PFOH_017,x_017,’same’);

%y_017 = convDiscrete(x_017,h_017,0.017);

% Sampling Time: T_s = 0.017

%--------------------------------------------------------------------------

[t_17, x_17] = sample(t2,funct); % Now has interval of DT with data at T_s

ILP_17 = ILP(t,0.17); % Impulse ILPof function with T_s = 0.017, and at interval DT

ZOH_17 = ZOH(t,0.17); %Impulse ZOH

FOH_17 = FOH(t,0.17);

PFOH_17 = PFOH(t,0.17);

y_ILP_17 = conv(ILP_17,x_17,’same’);

y_ZOH_17 = conv(ZOH_17,x_17,’same’);

y_FOH_17 = conv(FOH_17,x_17,’same’);

y_PFOH_17 = conv(PFOH_17,x_17,’same’);

%y_17 = convDiscrete(x_17,h_17,0.17);

% Figures

%--------------------------------------------------------------------------

figure() %continuous Function

hold on

plot(t,funct(t));

19



figure() %Example of sampling property

hold on

stem(t2,funct(t2))

plot(t,funct(t),’k--’,’LineWidth’,1.5);

figure() %expanded sample of t = 0.017

hold on

plot(t_017,x_017);

stem(t1,funct(t1));

figure() % alias prediction

hold on

plot(t,y_ILP_17,’r’,’LineWidth’,1.5);

plot(t,alias(t),’k--’,’LineWidth’,1.5);

figure() % ZOH model

hold on

plot(t,ZOH_017);

figure() %FOH model

hold on

plot(t,FOH_017);

figure() %PFOH model

hold on

plot(t,PFOH_017);

figure() % plot of for ILP reconstructions

subplot(2,1,1);

hold on

plot(t,y_ILP_017,’c’,’LineWidth’,1.5)

plot(t,funct(t),’k:’,’LineWidth’,1.5)

xlim([-1 1])

legend(’T_s = 0.017’,’Initial Function’)

subplot(2,1,2);

hold on

plot(t,y_ILP_17,’r’,’LineWidth’,1.5)

plot(t,funct(t),’k:’,’LineWidth’,1.5)

20



xlim([-1 1])

legend(’T_s = 0.17’,’Initial Function’)

xlabel(’Time (s)’)

figure() % plot of for ZOH reconstructions

subplot(2,1,1);

hold on

plot(t,y_ZOH_017,’c’,’LineWidth’,1.5)

plot(t,funct(t),’k:’,’LineWidth’,1.5)

xlim([-0.3 0.6])

legend(’T_s = 0.017’,’Initial Function’)

subplot(2,1,2);

hold on

plot(t,y_ZOH_17,’r’,’LineWidth’,1.5)

plot(t,funct(t),’k:’,’LineWidth’,1.5)

xlim([-0.3 0.6])

legend(’T_s = 0.17’,’Initial Function’)

xlabel(’Time (s)’)

figure() % plot of for FOH reconstructions

subplot(2,1,1);

hold on

plot(t,y_FOH_017,’c’,’LineWidth’,1.5)

plot(t,funct(t),’k:’,’LineWidth’,1.5)

xlim([-0.3 0.6])

legend(’T_s = 0.017’,’Initial Function’)

subplot(2,1,2);

hold on

plot(t,y_FOH_17,’r’,’LineWidth’,1.5)

plot(t,funct(t),’k:’,’LineWidth’,1.5)

xlim([-0.3 0.6])

legend(’T_s = 0.17’,’Initial Function’)

xlabel(’Time (s)’)

figure() % plot of for PFOH reconstructions

subplot(2,1,1);

hold on

plot(t,y_PFOH_017,’c’,’LineWidth’,1.5)

21



plot(t,funct(t),’k:’,’LineWidth’,1.5)

xlim([-0.3 0.6])

legend(’T_s = 0.017’,’Initial Function’)

subplot(2,1,2);

hold on

plot(t,y_PFOH_17,’r’,’LineWidth’,1.5)

plot(t,funct(t),’k:’,’LineWidth’,1.5)

xlim([-0.3 0.6])

legend(’T_s = 0.17’,’Initial Function’)

xlabel(’Time (s)’)

w = -2*pi*1000:0.01:2*pi*1000;

%w = 2*pi./t; % vector of frequencies

w_s = 2*pi/0.017;

ILP_w = abs(ILP(w,w_s));

ZOH_w = ZOH(w,w_s)+ 1e-9;

%ZOH_w = ZOH(t,0.017);

figure()

subplot(2,1,1)

hold on

plot((w),20*log10(ILP_w));

plot((w-w_s/2),20*log10(ZOH_w))

%axis([0 3 -60 1])

subplot(2,1,2)

hold on

plot(w,ILP_w);

plot((w-w_s/2),ZOH_w);

axis([-2000 2000 0 1.1]);

function [t,x] = sample(time, funct)

%--------------------------------------------------------------------------

% input:

% N_s : sampling number multiple of 0.0001

% funct : function being sampled with deltaT of 0.0001

% output:

% x : vector length of function sampled at intervals of T_s

%--------------------------------------------------------------------------

DT = 0.0001;

22



T_s = time(2)-time(1); % current difference between points

N_s = round(T_s/DT);

x = zeros((length(time)-1)*N_s+1,1);

t = time(1):DT:time(end);

for i = 1:N_s:length(x)-1

x(i) = funct(time((i-1)/N_s + 1));

end

end

function [y] = convDiscrete(x,h,T_s)

%--------------------------------------------------------------------------

% input:

% x : discrete function with intermediary spacing of DT = 0.0001

% and sample period of T_s

% h : impulse response of perfect low-pass filter (sinc function with

% DT = 0.0001

% output:

% y : vector of values corresponding to continuous region of -20<t<20

%--------------------------------------------------------------------------

DT = 0.0001;

N_s = round(T_s/DT);

offset = (length(h)-1)/2;

y = zeros(length(h),1);

for N = 1:length(h) % change this to be time

for k = 1:N_s:length(x)

if((N-k)>0) % update with offset

y(N) = y(N) + x(k)*h(N-k);

end

end

end

end

function [h] = ZOH(t,T_s)

%--------------------------------------------------------------------------

% input:

% t : time vector with intermediary spacing of DT = 0.0001

% T_s: sample period of T_s

% output:

23



% h : impulse response vector

%--------------------------------------------------------------------------

h = zeros(length(t),1);

for i = 1:length(t)

if (t(i)>0 && t(i) <= T_s)

h(i) = 1;

end

end

% figure()

% plot(t,h);

end

function[h] = FOH(t,T_s)

%--------------------------------------------------------------------------

% input:

% t : time vector with intermediary spacing of DT = 0.0001

% T_s: sample period of T_s

% output:

% h : impulse response vector

%--------------------------------------------------------------------------

h = zeros(length(t),1);

for i = 1:length(t)

if (t(i)>-T_s && t(i) <= 0)

h(i) = 1/T_s*(t(i)+T_s);

end

if (t(i)> 0 && t(i) <= T_s)

h(i) = -1/T_s*t(i)+1;

end

end

end

function [h] = PFOH(t,T_s)

%--------------------------------------------------------------------------

% input:

% t : time vector with intermediary spacing of DT = 0.0001

% T_s: sample period of T_s

% output:

% h : impulse response vector predictive first order hold

%--------------------------------------------------------------------------

24



h = zeros(length(t),1);

for i = 1:length(t)

if (t(i)>0 && t(i) <= T_s)

h(i) = 1/T_s*t(i)+1;

end

if (t(i)> T_s && t(i) <= 2*T_s)

h(i) = -1/T_s*(t(i)-T_s);

end

end

end

25


