
Sudoku Solver by Convex Optimization

Riley Kenyon

04/09/2020

Abstract

In this report linear and convex programming will be used to de-
termine the solution of a Sudoku problem based on the hints given
by the initial numbers. The solution does not use integer program-
ming, but minimizes the 1-norm of the vector in order to weigh the
numbering towards values of zero and one.

1 Introduction

Sudoku is a popular arithmetic based puzzle that has simple constraints.
Each puzzle is a square of size N , usually 9, and is subject to the following
rules

1. Each row must contain the numbers spanning 1 to N exactly once.

2. Each column must contain the numbers spanning 1 to N exactly once.

3. Each nonet must contain the numbers spanning 1 to N exactly once.

The objective is to fill in all the entries of the grid while following the rules as
fast as possible. To automate the procedure and compute digitally, the prob-
lem will be posed as a linear program with constraints and a cost function.
The constraints will bound the solution and incorporate the rules of play.
The cost function will ultimately determine the solution that best minimizes
the cost, representing the correct solution. The desired cost function here
is chosen to determine the solution that contains integer numbers spanning
[1,N] and satisfies the constraints. In linear programming, a method used to

1

solve optimization problems, the combination of constraint and criteria are
written in the form

minimize cTx
subject to Ax = b

(1)

where the first equation represents the cost function, and the second states
the problem is ”subject to” the constraints. This form in particular is repre-
sentative of equality constraints, however the constraints can also described
by an inequality.

1.1 Problem Statement

The proposed Sudoku problem will introduce a grid of numbers with pre-
populated hints that provide puzzle specific constraints for the optimization
problem. The grid of numbers will be input as a matrix of size NxN and
should output the Sudoku solution, as well as the solution vector x shown in
equation 1. The puzzle is assumed to be solvable, and will return the original
grid if no solution is found.

2 Linear Programming

To pose as a linear programming problem rather than an integer program-
ming problem, the bounds of the solution will be relaxed and allowed to span
a range from zero to one rather than forcing the solution to be purely inte-
ger. As a compensation for relaxing the variable, the cost function will be
the one-norm of the vector x. As seen in figure 1, the one norm produces a
weighting that favors values closest to zero. Compared to the 2-norm which
is quadratic, or the infinity-norm which weighs all values equally and pro-
duces a levelized weight, the one norm produces the sparsest solution with
many zeros.

For the Sudoku problem, the true values of the grid are not weighed
equally if represented as the vector x in equation1. A way to manipulate the
problem into a use-able form is to describe a single block within the grid as a
vector that represents the possible values the block may contain. In essence,
this allows the problem to describe the numbers 1 to N while maintaining
uniform weighting. For example, if there are 9 possible values of the block,

2

Figure 1: The weighting functions representative of the 1-norm, 2-norm, and
infinity norm. Notice the 1-norm produces a weight similar in appearance
to the absolute value. The weight associated with values far away from the
origin is grater than the weight near zero.

3

the number four would be represented by the vector

x =
[

0 0 0 1 0 0 0 0 0
]T

(2)

where the fourth entry evaluates to true. This binary approach to the prob-
lem keeps the weight across all values equivalent, i.e. the number 9 is no more
favorable than 1 to the cost function. Accordingly, this expands the size of
a NxN matrix to a vector of length N3. Using this setup, the constraint
matrix will incorporate the Sudoku rules.

3 Row Formulation

The row constraint manifest itself as a block within the matrix A from equa-
tion 1. The matrix represents a system of equations that describe the rule,
in conjunction with the vector b that constrains the system. Mathematically,
the requirement of having a single value of ’1’ in the first row is described by

x1 + xN+1 + x2N+1 + . . . + x(N−1)N+1 = b1 (3)

with the constraint that the number should be b1 = 1 to represent only
one of the possible one slots is true. As matrix multiplication, the equation
has the form of

[
1 01,(N−1) 1 01,(N−1) . . . 1 01,(N−1)

]
x = b1 (4)

where x is a vector of length N2 and represents the available slots for the
first row. The 1-norm produces the sparsest solution and ideally drives many
of the values of x in equation 3 to zero. The result is ultimately persuaded to
leaving one of the entities non-zero, or true in the binary sense. Extrapolating
this equation to multiple slots results in a system of equations that describe
the row rule for the first row of the grid, shown as

1 0 . . . 0 1 0 . . . 0 . . .
0 1 0 0 1 . . . 0 . . .
...

. . . 0 0 0
. . . 0 . . .

0 0 . . . 1 0 0 . . . 1 . . .

x =


b1
b2
...
bN

 (5)

where the second row of the matrix multiplication corresponds to x2+xN+2+
x2N+2 + . . ., and follows the same form for subsequent rows of the matrix.

4

Notice that the diagonal elements are equal to one in sub-sections of size
NxN . The pattern is commonly referred to as the identity matrix due to its
properties to map an input to itself. The equation shown in 5 can be written
as

Arow,1 =
[
IN IN . . . IN

]
= IN,N2 (6)

where the identity matrix of size N is repeated along the row N times.
The dimension of this block is NxN2, and encompasses the values of x1 to
xN2 . This pattern holds for x encompassing the entire Sudoku grid. The
starting element for the second row in the Sudoku is x82 assuming N is
9. This directly follows x81, the last element multiplied with the first row in
equation 5. Notice that by appending another row to the matrix, the Sudoku
row requirement is in the form of a block diagonal matrix because the first
element x82 directly succeeds the last element from the previous row x81. By
backing out the matrix multiplication, the final matrix that describes the
row rule of Sudoku is described by

Arow =


I1,N 0 . . . 0

0 I1,N
...

...
. . . 0

0 . . . 0 I1,N

 (7)

and is size N2xN3. Used in conjunction with matrices derived from the
other Sudoku rules, the matrix Arow may be appended to provide the restric-
tions embedded from a single unique occurrence of a value per row.

4 Column Formulation

To incorporate the column rules of Sudoku into a matrix system of equations,
the individual elements of x will be written out to understand the formula-
tion. For unique elements to exist in the first column of the Sudoku grid the
following equation is true

x1 + xN2+1 + x2N2+1 + . . . + x(N−1)N2+1 = b1 (8)

5

the representation of the equation is to have elements summed within the
column that are one row apart, where one row consists of N2 elements of x.
The succeeding steps are essentially equivalent to the row formulation with
a distance of N2 − 1 between elements

[
1 0N2−1 1 0N2−1 . . . 1 0N2−1

]
x = b1 (9)

stacked on top of eachother, the format is the same as the rows, where the
elements of a row are offset by one element from the previous which results
in the identity matrix.The size of the identity for the column requirements
is equal to N2 whilst also only being repeated along the row. The final form
of matrix that describes the column requirement is

Acol =
[
IN2 IN2 . . . IN2

]
(10)

where the identity is repeated N times, for a total matrix size of N2xN3.
Used in conjunction with matrices derived from the other Sudoku rules, the
matrix Acol may be appended to provide the restrictions embedded from a
single unique occurrence of a value per column.

5 Nonet Formulation

With the typical size of a Sudoku puzzle being 9x9, the grid can be broken
into nonets to incorporate another restriction on numeric placement. The
nonets each individually must have unique elements. The process is similar
to preceding requirements on row and column uniqueness, however the format
is different due to the strange offsets from elemnents in the flattened sense.
One row below and one row suceeding is not (-1,+1), but rather +90. The
case for the first nonet (top-left corner) of the Sudoku puzzle is is the equation

x1 + xN+1 + x2N+1 + xN2+1 + xN2+N+1 + xN2+2N+1

+ x2N2+2 + x2N2+N+2 + x2N2+2N+2 = b1 (11)

This can be thought about as the first three grid spaces in the first row
that occupy the binary slot 1, followed by a row or separation from the
first element (N2 slots), and repeated for the third row. As a matrix, the
representation of the 1 slot looks like

6

ablk,1 =
[

1 0N−1 1 0N−1 1 0N−1 0N2−3N . . .
]

(12)

For all the available values in the first nonet, the process repeats for each
element, offset by the initial position of the slot thereby creating the identity
matrix. The representation for the first nonet is shown as

Ablk,1,1 =
[
IN IN IN 0N,N2 . . . IN IN IN 0NxN2

]
(13)

to incorporate the seconds block, the elements of the array are offset by 3N
or 27 in the case of a 9x9 Sudoku. The pattern remains the same for the
remainder of the row, where the next block diagonal of the matrix occurs, the
representation of the matrix is then the following for the first row of nonets

Ablk,1 =

 IN,3N 0 0 IN,3N 0 0 IN,3N 0 0
0 IN,3N 0 0 IN,3N 0 0 IN,3N 0
0 0 IN,3N 0 0 IN,3N 0 0 IN,3N

(14)

The preceding matrix is a repeated sequence of three sub-matrices and will
be used to completely encompass the matrix that represents the nonet non-
repeating requirement, the block component Ablk,1 is implemented in another
block diagonal matrix. The next rows of the matrix represent the second and
third rows of nonets in the Sudoku puzzle.

Ablk =

 Ablk,1 0 0
0 Ablk,1 0
0 0 Ablk,1

 (15)

where the zeros are matrices of size Nx3N . The requirement for the nonet
rule is now incorporated into this matrix.

6 Singular Formulation

The singular requirement is embedded in the relaxed assumptions that allow
Xi to span the range [0,1] rather than explicitly integers. In the binary
formulation of the problem, the values of [1,9] were transformed into a vector
of size 9 that used ones (true) to represent what value was present in any given
square of the Sudoku. Introducing that method requires another constraint

7

to operate, which is that no more than one value is permitted to exist in the
range of [1,9], i.e. a single grid element cannot contain multiple values. As
a mathematical requirement, the representation is similar to that of rows or
columns

Asing =


11xN 0 . . . 0

0 11xN
...

...
. . . 0

0 . . . 0 11xN

 (16)

it is a block diagonal matrix with sub-matrices of a ones vector of length
1XN . In total, the matrix is size N2xN3.

7 Clue Matrices

The matrices derived from the rules of the game and the additional require-
ments set by the structure of the optimization problem provide many of the
needed equations, however the set that ultimately makes a Sudoku problem
unique is the clues. The clues of the grid are the entities that are known from
the Sudoku setup. These numbers are the basis on which the optimization
problem operates. The clues are converted into the binary format posed for
the linear program and are appended to the end of the constraint matrix A.
The decomposition from a grid from utilizes the following expression,

a[N(i− 1) + j + Gij] = 1 (17)

Or in other words, the row vector a at the flattened position of element Gij

plus the value of Gij is equal to 1. The flattened position is composed of
(i − 1) multiples of length N and j is the offset to the grid position. The
additional value Gij converts to the correct binary position, recalled from
equation 2. When multiplied by x, the respective binary value will evaluate
to true. This process is continued for all elements of the Sudoku grid not
equal to zero.

8 Setting up the Linear Program

With the logical requirements for the Sudoku puzzle now embedded into the
system matrices, the linear program can now be defined and solved to provide

8

the optimal solution (i.e. the solved puzzle in binary format). Referring to
the initial setup of an optimization problem in equation 1, the matrices can
be described as following. The matrix A is the system of equations that define
the how the rows, columns, nonets, and individual grid spaces operate with
the assumption that each binary value is allowed to span the range [0,1]. To
construct the matrix used with the linear program solver, the A sub-matrices
will be appended to each other to incorporate all the requirements. As such,
the matrix A consist of

A =


Arow

Acol

Ablk

Asing

Aclue

 (18)

Equally as important as the system matrix are the constraints. In this prob-
lem, the Sudoku grid is desired to have a unique element per each rule such
that there are no overlap, repeating elements such that the rules are violated.
This means that the constraint vector b consists solely of ones, of length m if
the A matrix is size mxn. In order for the dimensions to line up for the ma-
trix algebra, the number of constraints is equal to the number of rows present
in the system matrix. The vector b used in the analysis of the problem is
plainly stated as

b = 1 (19)

The optimization solver used in this analysis is the Matlab routine linprog.
The solver can utilize both equality and inequality constraints as inputs. As
such, the bound of xi to remain in the range [0,1] needs to be embedded as an
inequality constraint of the form Aineqx ≤ bineq. The matrix is incorporated
from the equations

Ix ≤ 1

Ix ≥ 0
(20)

where the bold face 0 and 1 represent vectors of length x consisting of the
value. However, due to the solver explicitly looking for a minimum, the
second equation will be flipped in sign to incorporate the inequality thereby
becoming −Ix ≤ 0. From the equations, the values of Aineq and bineq are

9

shown to be

Aineq =

[
I

−I

]
, bineq =

[
1
0

]
(21)

From the optimization formulation, there exists a cost function used to
evaluate the optimal solution. For the Sudoku puzzle, because the problem
was cast as a binary linear programming problem rather than an integer
optimization, the cost function c will be unitary across the elements of x.

c =
[

1 1 1 . . . 1
]T

(22)

In essence, due to the problem constraining the elements of x to exist
within the range of [0,1], then the cost function represents the 1-norm because
negative entries are not allowed. As mentioned during the introduction, the
1-norm produces the sparsest solution because of the weighting shown in
figure 1 which is ideal in this case due to swaying the solution to be favorable
of the integer values of 0 and 1.

9 Results

The problem is fully defined and can be solved for using linear programming
in Matlab or the auxiliary optimization libraries with CVX. The solution
vector is obtained x, and the binary format used during the problem casting
is parsed to obtain integer values and populate a solution matrix. Four
example matrices used to test the setup and both Matlab solvers, and are
described below. The time elapsed using the various methods can are shown
to exhibit the efficiency of the optimization solvers. The results obtained
from the example Sudoku puzzles are identical, with the only variant being
the solver and time elapsed.

Solver Puzzle 1 (sec) Puzzle 2 (sec) Puzzle 3 (sec) Puzzle 4 (sec)

linprog 0.00226 0.00229 0.002139 NA
CVX 0.001632 0.001549 0.001934 NA

As seen in the table above CVX outperformed linprog by approximately
5 milliseconds, however both solvers are extremely efficient and able to solve
the first three problems effectively. In the case of the fourth example, due
to the way the problem was cast and because it was not posed as a true

10

integer optimization problem they were unable to solve. The results from
the fourth puzzle included decimal values in the solution x, and could not
find the integer minimum.

10 Back-Solve Technique

To solve a Sudoku incapable of being solved with the optimization proposed,
the back-solve technique is implemented as a brute-force logic based combi-
nation. The brute-force method will effectively try every value that meets
the rules until the full Sudoku grid is filled. The method initializes one block
with the first value that meets the row, column, and nonet rules and recur-
sively solves until it reaches a failure. When a failure occurs, all the rules
cannot be satisfied, and the recursion resets or ’backs up’ to the last met con-
straint. The process continues to iterate until complete. Although more time
intensive, it is able to solve the fourth Sudoku puzzle that the optimization
technique could not.

Solver Puzzle 1 (sec) Puzzle 2 (sec) Puzzle 3 (sec) Puzzle 4 (sec)

Back-Solve 0.0508 0.2490 0.0971 0.6211

Notice the time elapsed for the solver is significantly greater than the
time for the optimization techniques. The comparison does not include the
setup of the matrices required to solve for the linear programming approach,
simply the time of the solver itself.

11 Conclusion

Each solution was determined using matlab’s linear programming optimizer
linprog to constrain each system and solve using a user-defined cost function.
The 1-norm was used to create the sparsest solution and allow the solver to
favor integer solutions, although the problem was not posed as an integer
optimization. The option of CVX was included as an additional method to
solve using the SeDuMi or SDPT3 solvers. The solutions were found to be
identical to those provided using linprog. Both the optimization solvers were
unable to solve the fourth Sudoku puzzle, however to obtain a solution the
Puzzle can be solved using a ’back-solve’ method based off brute force and

11

satisfying requirements. Using the ’back-solve’ method solved the problems,
but compared to the time required for the other methods the process took
approximately 50-600 times as long.

A Code

A.1 Main Function

%% Sudoku Solver - Optimal Design

%--

% MEID: 272-513

% Riley Kenyon

% 04/09/2020

%--

clear all

close all

clc

N=9;

NN = N*N; % Number Cells

%NOTE: each cell has 9 possible numbers that can

% be chosen. So the first 9 variables refer

% to cell (1,1). If for example the (1,1) cell

% is a 4, than x(1:9)=[0 0 0 1 0 0 0 0 0] etc

NNN = N*N*N; %Total number of binary variables x

%%%%%%%%%%%%%%%%% EXAMPLE PROBLEMS %%%%%%%%%%%%%%%%%%%

% MEDIUM LEVEL

MatrixInitial1 = [0 5 0 0 2 0 3 7 0;

0 3 0 9 4 0 0 0 1;

0 0 0 7 0 0 0 0 0;

0 0 5 8 0 0 9 2 0;

3 0 0 0 0 0 0 0 5;

0 7 8 0 0 9 1 0 0;

0 0 0 0 0 2 0 0 0;

12

8 0 0 0 7 6 0 5 0;

0 2 1 0 8 0 0 6 0];

% EVIL LEVEL

MatrixInitial2 = [0 6 9 7 0 0 4 3 0;

0 1 0 0 0 0 0 7 0;

3 0 0 0 0 5 0 0 2;

0 3 0 0 0 0 0 0 1;

0 0 0 0 9 0 0 0 0;

6 0 0 0 0 0 0 2 0;

7 0 0 2 0 0 0 0 3;

0 9 0 0 0 0 0 4 0;

0 4 2 0 0 3 5 1 0];

% %EVIL LEVEL

MatrixInitial3 = [0 9 0 4 0 8 5 0 0;

0 0 0 0 0 0 0 0 6;

2 0 1 0 7 0 9 0 0;

5 0 0 0 8 0 0 0 7;

0 0 7 9 0 4 1 0 0;

8 0 0 0 2 0 0 0 9;

0 0 2 0 3 0 4 0 5;

4 0 0 0 0 0 0 0 0;

0 0 5 8 0 7 0 9 0]

% %Hardest Sudoku Ever

MatrixInitial4 = [8 0 0 0 0 0 0 0 0;

0 0 3 6 0 0 0 0 0;

0 7 0 0 9 0 2 0 0;

0 5 0 0 0 7 0 0 0;

0 0 0 0 4 5 7 0 0;

0 0 0 1 0 0 0 3 0;

0 0 1 0 0 0 0 6 8;

0 0 8 5 0 0 0 1 0;

0 9 0 0 0 0 4 0 0]

%

%%

13

[MatrixFinal, x] = Sudoku_Kenyon(MatrixInitial4);

A.2 Functions

function[MatrixResult,x] = Sudoku_Kenyon(MatrixInput)

%% Sudoku Solver

% MCEN 5125 Optimal Design

% Riley Kenyon

% 04/06/2020

%--

% Description - Script to be run from SudokuProject.m

% Inputs: Sudoku Matrix

% Outputs: [Final Matrix, x]

%% Process

[MatrixResult,x] = solveSudoku(MatrixInput,’CVX’); % Use linprog / CVX / backsolve

end

%% Functions

function [MatrixResult,x] = solveSudoku(MatrixInput,method)

% Determine matrix dimension

[N,M] = size(MatrixInput);

if N ~= M

error(’Matrix is not Square.’)

return

end

% Populate constraint Matrices

[A,b,A_ineq,b_ineq,x_default] = setupSudoku(MatrixInput,N);

% Solves sudoku by method

switch method

case ’linprog’

c = ones(size(A,2),1);

x = linprog(c,A_ineq,b_ineq,A,b);

case ’CVX’

x = solveCVX(A,b,1);

case ’backsolve’

14

x = x_default’;

otherwise

error(’No solver given.’)

return

end

% Check to see if solved

if(any(isnan(x))) % Incorporate Backsolving here

x = x_default’;

end

% Get Matrix Output

tic

MatrixResult = invertSudoku(x,N);

toc

if MatrixResult == -1

MatrixResult = MatrixInput;

end

end

function [A,b,A_ineq,b_ineq,x_default] = setupSudoku(MatrixInput,num)

% Define appended matrix from input clues

[appendedA,x_default] = parseSudoku(MatrixInput,num);

% Define row requirements

bigeye_row = repmat(eye(num),1,num);

for i = 1:num

A_rows_flat{i} = bigeye_row;

end

A_rows = blkdiag(A_rows_flat{:});

% Define column requirements

A_col = repmat(eye(num^2),1,num);

% Define small cube requirements

bigeye_block = repmat(eye(num),1,sqrt(num));

for i = 1:sqrt(num)

A_block_flat{i} = bigeye_block;

15

end

A_block_section = repmat(blkdiag(A_block_flat{:}),sqrt(num));

for i = 1:sqrt(num)

A_block_block{i} = A_block_section;

end

A_block = blkdiag(A_block_block{:});

% Singular constraints

for i = 1:num^2

A_sing_flat{i} = ones(1,num);

end

A_sing = blkdiag(A_sing_flat{:});

% Concatenate into large matrix A

A = [A_rows; A_col; A_block; A_sing;appendedA];

% Constraints b

[m,n] = size(A);

b = [ones(m,1)];

% Bounds

A_ineq = [eye(n); -eye(n)];

[m_ineq,n_ineq] = size(A_ineq);

b_ineq = [ones(m_ineq/2,1); zeros(m_ineq/2,1)];

end

function [x] = solveCVX(A,b,des_norm)

% Function to solve sudoku problem using cvx

n = size(A,2);

cvx_solver sedumi

cvx_begin

variable x(n)

minimize(norm(x, des_norm))

subject to

A * x == b;

16

cvx_end

% x = round(x);

end

function [MatrixResult] = invertSudoku(x,N)

% Function to take vector input and return sudoku matrix

% Inputs: x (vector)

% N (size)

% Outputs: MatrixResult (Formatted Matrix

% ---

ind = (1:length(x))’; % flattened indexes

x = round(x);

% if sum(x) ~=N^2

values = ind.*x;

mapped = reshape(values,N,N^2); % where columns correspond to nine element vectors representing numbers

mapped = sum(mapped,1); % sum elements in each column along all rows = row vector

result = rem(mapped,N); % Mapped 1->4 where 0 = 4

for ii = 1:length(mapped)

if (mapped(ii) == 0)

result(ii) = -1; % case where element is not found

elseif result(ii) == 0

result(ii) = N; % case where remainder is 0 == 4

end

end

%values = values(values ~=0); % Non-zero indexes

% remainder = rem(values,N); % Mapped 1->4 where 0 = 4

% result = zeros(1,length(values)); % Allocate

% for ii = 1:length(values)

% if remainder(ii) == 0

% result(ii) = N;

% else

% result(ii) = remainder(ii);

% end

% end

% Use to call backsolving method for those that cannot be solved fully with

% optimization

17

if any(result == -1)

result(result == -1) = 0;

newSol = (reshape(result,N,N))’;

MatrixResult = backsolve(newSol);

% if length(result) ~= N^2 % Should not evaluate with new method

% MatrixResult = -1;

else

MatrixResult = (reshape(result,N,N))’;

end

end

function [appendedA,x_default] = parseSudoku(A,N)

% Function to parse sudoku input Matrix into a constraint matrix

A_vec = reshape(A’,N^2,1); % Convert to vector

loc = (1:length(A_vec))’; % Index vector

A_ind = loc(A_vec~=0); % Non-zero inputs

appendedA = zeros(length(A_ind),N^3); % Allocate

x_default = zeros(1,N^3);

for ii = 1:length(A_ind)

% Calculation - convert from # to array index, one entry per row

appendedA(ii,N*(A_ind(ii)-1)+A_vec(A_ind(ii))) = 1;

x_default(N*(A_ind(ii)-1)+A_vec(A_ind(ii))) = 1;

end

end

function [A] = backsolve(A)

[solved,A] = recursiveSolve(A);

if solved

return

else

A = -1;

end

end

function [row,col] = findEmptyPos(A)

[m,n] = size(A);

for ii = 1:m

18

for jj = 1:n

if (A(ii,jj) == 0)

row = ii;

col = jj;

return

end

end

end

end

function [solved,row,col] = isSolved(A)

if ~any(A==0,’all’) % exit condition

row = [];

col = [];

solved = true;

else

[row,col] = findEmptyPos(A);

solved = false;

end

end

function [solved,A_in] = recursiveSolve(A_in)

global A

[solved,row,col] = isSolved(A_in);

if solved

A = A_in; % Set at final iteration

return

end

for val = 1:size(A_in,1)

if looksgood(A_in,row,col,val)

A_in(row,col) = val;

[solved,A_in] = recursiveSolve(A_in);

if solved

A_in = A; % For each loop on the way out, set A_in to A

return

end

A_in(row,col) = 0; % If unable to solve

19

end

end

solved = false;

end

function [isGood] = looksgood(A,row,col,val)

% Row check

if any(A(row,:)== val,’all’)

isGood = false;

return

end

% Column check

if any(A(:,col) == val,’all’)

isGood = false;

return

end

% Block check

N = sqrt(size(A,1));

startRow = row - mod(row-1,N); % 0,1,5

startCol = col - mod(col-1,N);

if any(A([startRow:startRow+N-1],[startCol:startCol+N-1]) == val,’all’)

isGood = false;

return

end

isGood = true;

end

20

