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Theory
Feedback linearization can be performed by manipulating a system into controller form, shown by

Where  is an invertible matrix,  is a vector of the same dimension as u, and (A,B) are apprpriately

sized matrices that satisfy the controllability conditions. By choosing

we obtain the linear system

Which we can now design a controler around as a linear system. 

Simple Pendulum
Consider the simple mendulum model we controlled in the lab

1. Write the system in controller form by identifying A,B, , 

The equation can be re-written as the following

and in matrix form as

where the identified matrices are represented by

2. Prove that the PD with Gravity Compensation law is a form of feedback linearization

Recall the PD with gravity compensation is a law represented by
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Using feedback linearization and choosing u as described above, the PD with gravity compensation is equal to 

,

where 

Mixing Tank
Consider a mixing tank fed by two inlets. Let  be the incoming flow of a solvent (water) and let  be

the incoming flow of solute (syrup). Let  be the total volume of liquid in the tank and let  be the total

concentration of the solution. Assuming a natural outlet flow, the total volume in the tank is governed by

The solvent concentration is instead equal to 

.

1. Compute the state-space model of the system

Taking the derivative with respect to time results in the following for the second equation

written in terms of ,

  

Separated and written in state-space form

2. Written in controller form the matrices correspond to the following

.
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3. Using feedback linearization, design a controller that stabilizes the system to the refereces . and

.

% Non linear controller for tank
k = 10;          % Flow rate
A = zeros(2);   
B = eye(2);

% Simulation
T = 10;
IC = [1 0]';
REF = [5 0.3]';     % Note that higher concentrations are not achievable due to the lower limit on the saturation
    
%% Design controller LQR
R11 = 0.1;                        % affets u(1)
R22 = 0.1;                       % affects u(2)
R = diag([1/R11,1/R22]);

Q11 = 0.01;                      % affects x(1)
Q22 = 0.001;                     % affects x(2)
Q = diag([1/Q11,1/Q22]);

[K,~,~] = lqr(A,B,Q,R);
disp(K)

    3.1623   -0.0000
    0.0000   10.0000

4. Simulate the closed-loop dynamics

data = sim('tank_sim');

Warning: Convergence problem (mode oscillation) detected when solving algebraic loop containing 'tank_sim/
Plant/Plant' at time 0.4.  Simulink will try to solve this loop using Simulink 3 (R11) strategy.  Use
 feature('ModeIterationsInAlgLoops',0) to disable the strategy introduced in Simulink 4 (R12)

figure(1)
subplot(2,1,1)
plot(data.t,data.u(:,1),'LineWidth',1.5)
xlim([0 5])
ylabel('Flow of Solvent $u_1$',"Interpreter","latex")
subplot(2,1,2)
plot(data.t,data.u(:,2),'LineWidth',1.5)
xlim([0 5])
ylabel('Flow of Solute $u_2$',"Interpreter","latex")
xlabel('Time')
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figure(2)
subplot(2,1,1)
plot(data.t,data.x(:,1),'LineWidth',1.5)
xlim([0 5])
ylabel('Total Tank Liquid Volume $x_1$',"Interpreter","latex")
subplot(2,1,2)
plot(data.t,data.x(:,2),'LineWidth',1.5)
xlim([0 5])
ylabel('Concentration of solution $x_2$',"Interpreter","latex")
xlabel('Time')
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