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Theory

Feedback linearization can be performed by manipulating a system into controller form, shown by
x=Ax+ B (y(x) +T(x)u),

Where I'(x) is an invertible matrix, y(x) is a vector of the same dimension as u, and (A,B) are apprpriately
sized matrices that satisfy the controllability conditions. By choosing

u=Tx)"v-wkx),
we obtain the linear system
x = Ax+Bv

Which we can now design a controler around as a linear system.

Simple Pendulum
Consider the simple mendulum model we controlled in the lab

ml’a = —mgl sin(a) — ca + ku
1. Write the system in controller form by identifying A,B, y(x), I'(x)

The equation can be re-written as the following

G=—"C g+ Kk (—ﬁk&lsin(a) +u)

mi? ml?

and in matrix form as

g 0 1 u 0 gl .
L;] = 1o _# L.J + ﬁ ([— = sm(a)} +[l]u)

where the identified matrices are represented by

0 1 0
A=y _c | B=|k|. vi@)=-"8snw, Tx=1,
—= = k
ml? ml?

2. Prove that the PD with Gravity Compensation law is a form of feedback linearization

Recall the PD with gravity compensation is a law represented by



= Ek&lsin(a) ~K,(0—-0,) —Kpf

Using feedback linearization and choosing u as described above, the PD with gravity compensation is equal to
u= 1(9[(&1 sin(a) +V> ,

where

v=-K,(a—a,) —Kpa

Mixing Tank
Consider a mixing tank fed by two inlets. Let u, be the incoming flow of a solvent (water) and let u, be

the incoming flow of solute (syrup). Let x; be the total volume of liquid in the tank and let x, be the total
concentration of the solution. Assuming a natural outlet flow, the total volume in the tank is governed by

)'Cl :M1+M2—K\/.xl

The solvent concentration is instead equal to

— f”z—x2’< \/X_l

X1

X2

1. Compute the state-space model of the system

Taking the derivative with respect to time results in the following for the second equation

XIXZ‘l‘.xle = I/lz—xZK \/x_l

written in terms of x,,

2. Written in controller form the matrices correspond to the following

—k\/x; 1 1

A={O}, B={1 0}, w(x) = 2Kx, , I'(x) = _% l—x,

Va X%

0 01




3. Using feedback linearization, design a controller that stabilizes the system to the refereces x; = r; > 0. and

x2=}’2€[0,1].

% Non linear controller for tank
k = 10; % Flow rate

A = zeros(2);

B = eye(2);

% Simulation

T = 10;
IC = [10]';
REF = [5 ©.3]"; % Note that higher concentrations are not achievable due to the lower limit

%% Design controller LQR

R11 = 0.1; % affets u(l1)
R22 = 0.1; % affects u(2)
R = diag([1/R11,1/R22]);

Q11 = 0.01; % affects x(1)
Q22 = 0.001; % affects x(2)

Q = diag([1/Q11,1/Q22]);

[KJ~J~] = 1qP(AJBJQ)R);
disp(K)

3.1623 -0.0000
0.0000 10.0000

4. Simulate the closed-loop dynamics

data = sim('tank_sim');

Warning: Convergence problem (mode oscillation) detected when solving algebraic loop containing 'tank_sim/
Plant/Plant' at time ©.4. Simulink will try to solve this loop using Simulink 3 (R11) strategy. Use
feature('ModeIterationsInAlgloops',0) to disable the strategy introduced in Simulink 4 (R12)

figure(1)

subplot(2,1,1)

plot(data.t,data.u(:,1), 'LineWidth',1.5)

x1lim([@ 5])

ylabel('Flow of Solvent $u_1¢%$',"Interpreter","latex")
subplot(2,1,2)

plot(data.t,data.u(:,2), 'LineWidth',1.5)

x1lim([@ 5])

ylabel('Flow of Solute $u_2%$',"Interpreter"”,"latex")
xlabel('Time")
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figure(2)

subplot(2,1,1)

plot(data.t,data.x(:,1), 'LineWidth',1.5)

x1lim([@ 5])

ylabel('Total Tank Liquid Volume $x_1%$',"Interpreter","latex")
subplot(2,1,2)

plot(data.t,data.x(:,2), 'LineWidth',1.5)

x1lim([© 5])

ylabel('Concentration of solution $x_2$',"Interpreter"”,"latex")
xlabel('Time")



4.5

Vo]

4
Iz owmn[oA pInbry yuey, (810,

™

N

o

-

2.5 3.5 4.5
Time

1.5

0.5

¢x UOIIN[OS JO UOTPRIJUIOUO))



