
University of Colorado - Boulder

MCEN 5115 Mechatronics

May 4th, 2020

Implementing Machine Learning Models with
Luxonis Depthai Camera

Author:
Riley Kenyona

aMEID: 272-513

Professor:
Derek Reamon



I. Introduction
This report is intended to fulfill the graduate section requirements of the course Mechatronics. In the report, the

USB3 Depthai camera from Luxonis will be used to implement machine learning models via the Intel Movidius Myriad
X VPU on the camera. In particular, the the report will serve as a guide to

1) Setup the Luxonis on aarch64 and armhf architectures
2) Calibrate the stereo cameras for differential depth
3) Develop a custom model using tensor flow for target recognition
4) Offload TensorFlow and Caffe models to the Luxonis camera
In the process of implementing custom machine learning models, the OS will be geared towards implementing

embedded computer vision and ROS. Scripts relevant to the project will be located in the repository:

https://github.com/RileyKenyon/Mechatronics

II. Experimental Setup
The hardware being used for the project is a Raspberry Pi 3 B+. The single board computer utilizes light-weight

operating systems and is useful as an inexpensive Linux/GNU environment. To setup the Raspberry Pi, additional
software and toolkits will be installed to facilitate machine learning model implementation. The steps needed to build
the experimental setup are

1) Select and flash the chosen operating system (OS) to the Raspberry Pi
2) Download and install the Intel OpenVino toolkit
3) Download and install the robotics operating system, ROS (optional)
Note this is only for running existing models, the computational resources of the Raspberry Pi are not significant

enough to train a model. Training options are primarily through a web service such as Google Collab, with limited
success on a smaller embedded GPU platform such as the Nvidia Jetson Nano.

A. Operating System
There are two operating system distributions outlined in this document: Raspbian (buster), which is derived from

Debian and is the official operating system from the Raspberry Pi founation, and Ubuntu Mate, which is a light weight
distribution of Ubuntu 18.04. The links to download the OS images are found below:

Rasbian Buster https://www.raspberrypi.org/downloads/raspbian/

Ubuntu Mate 18.04 https://ubuntu-mate.org/download/

Note that Raspbian is 32 bit hard float and Ubutnu Mate can be either 32 bit or 64 bit. This can be verified by using
the command: uname -m from the terminal once the OS is installed. If the value of armv7l is returned, the OS is 32 bit;
if aarch64 is returned, the OS is 64 bit. For the purposes of the project, there are two compatible OS for the Raspberry
Pi that may be use with OpenVino, the visual computing toolkit offered from intel. This includes the Raspberry Pi
Buster installation and the 64 bit experimental Ubuntu Mate OS. A more complete description of OpenVino can be
found from Intel’s website:

"The openVINO toolkit is a free toolkit facilitating the optimization of a Deep Learning model from a
framework and deployment using an inference engine onto Intel hardware."

In essence, in order to communicate with the Myriad X Visual Processing Unit (VPU), the main chip on Luxonis
cameras, it is necessary to install the toolkit. The links to the openVino installation procedures are below:

Rasbian & Ubuntu Mate 18.04 https://docs.openvinotoolkit.org/latest/index.html

Our team is interested in using Robotic Operating System (ROS) to control processes involved the operation of the
project. From community members, it was recommended to utilize Ubuntu Mate in order to more easily implement ROS.
It is feasible to install ROS with Raspbian, however not recommended due to conflicts when installing new packages.
An alternative is to use the threading python module to communicate between processes rather than installing ROS if
the system only requires a couple threads. Regardless, the links to the ROS Melodic installation tutorials can be found
below:

Rasbian http://wiki.ros.org/melodic/Installation/Debian

Ubuntu Mate 18.04 http://wiki.ros.org/melodic/Installation/Ubuntu

1

https://github.com/RileyKenyon/Mechatronics
https://www.raspberrypi.org/downloads/raspbian/
https://ubuntu-mate.org/download/
https://docs.openvinotoolkit.org/latest/index.html
http://wiki.ros.org/melodic/Installation/Debian
http://wiki.ros.org/melodic/Installation/Ubuntu


B. Flashing Operating System
More documentation can be found online if necessary, however the process of flashing an image to a Micro-SD card

is straight forward.
1) Download the image from the respective location (either Raspbian or Ubuntu in this report)
2) Download a flashing software such as Balena Etcher: https://www.balena.io/etcher/
3) Download an SD card formatter: https://www.sdcard.org/downloads/formatter/
4) Format SD card, select the OS image and SD in flashing software
5) Remove once completed and insert into hardware

C. Preliminary Package Install
After the first boot and sufficiently updating and upgrading the system, the installation of future packages requires

some base dependencies. The command line utilities apt, apt-get are common for installing packages through the
default package manager with apt software repositories. The location of these on Ubuntu and Debian are likely found in
the /etc/apt/sources.list file or in separate files under the /etc/apt/sources.list.d/. If it is necessary to add more
packages to the list, the methods to incorporate the additional repositories into apt is to utilize the add-apt-repository
command. The format is:

add-apt-repository [options] repository

As with most command line tools, the --help option lists the arguments of the tool. The following commands were
utilized in the obtaining base packages required for openVino

1 sudo apt-get update && sudo apt-get upgrade
2 sudo apt install python3-pip
3 sudo apt install git
4 sudo apt install cmake libusb-1.0-0-dev
5 sudo apt install python3-numpy
6 sudo apt install python3-opencv

If problems arise, try installing the package gfortran. Note that the apt repositories are usually more stable but older
versions of the packages. pip is an alternative that uses the python package index (pypi) and wheels to install packages.
This method was tested on the Raspbian distribution, but using pip with Ubuntu had issues with finding the packages
built for the specific architecture. At this point the necessary packages should be installed for use with OpenVino

D. OpenVino Install
Installing OpenVino on Ubuntu Mate and Rasbian follow the same process, but is more complicated on Ubuntu

Mate. Using the utility: wget which downloads data from an internet address, the version of OpenVino can be obtained
for arm architectures. Utilizing the command

1 wget https://download.01.org/opencv/2020/openvinotoolkit/2020.1/\
2 l_openvino_toolkit_runtime_raspbian_p_2020.1.023.tgz

in the desired directory of installation, such as ~/Downloads/. This will download the .tgz file and place the file in the
working directory. Next the contents will be extracted and placed in the directory /opt/intel/openvino. Note the
backslash in the previous command is used for readability and only separates the command into two lines. In order to
extract the tarball (.tgz), use the commands

1 sudo mkdir -p /opt/intel/openvino
2 sudo tar -xf l_openvino_toolkit_runtime_raspbian_p_<version>.tgz --strip 1 -C /opt/intel/openvino

to create a directory and the parent directories (-p) and extract the contents of the tarball. The rest of the install can be
followed from the link from Intel. Once complete, when a new instance of the terminal is launched or ~/.bashrc is
sourced, the command line should be preceded by the message:

[setupvars.sh] OpenVINO environment initialized

2

https://www.balena.io/etcher/
https://www.sdcard.org/downloads/formatter/


An alternate method from the pre-built binaries is to build the toolkit from source, this can be useful if using a system
architecture that is not currently supported through the default installation methods. The project can be built using the
instructions provided in the build-instruction.md file. A link to the project and the Github repository can be found at

Project https://01.org/openvinotoolkit

Github https://github.com/openvinotoolkit/openvino

E. Depthai Install
Depthai is the python package that is used to communicate with the Luxonis camera. Although the package is

currently not hosted by the python package index, the company is planning on offering an official install via pip in the
future. In the interim, there is an excellent walk through for how to install their packages linked below:

https://docs.luxonis.com/api/#install

The process is straight forward if you are planning on using Raspbian, however there are some tricks involved in getting
it working properly with Ubuntu Mate. It is also important to note that the install is an editable install, and at the time of
this writing was not recognized as a python package to be used with ROS.

1. Ubuntu Mate Installation
In order to communicate withe the Luxonis camera, the python modules of depthai have to be built for the system

and architecture. By default the python modules in the download from the Luxonis Github include the .so files for
the Rasbian operating system with armv7l. However, in order to work with aarch64 Ubuntu 18.04 they will need to
built using the depthai-api. This can be downloaded from the Luxonis github. This should be placed in the folder
<DownloadLocation>/depthai-api/. Refer to the README.md for more information on the details. There is a shell script
in the depthai-api download that will install the dependencies and build the modules for the system architecture. These
are executed by using the ./<script>.sh operator to execute, however on Ubuntu Mate the memory restriction causes
the operation to hang and for the system to freeze. If such as scenario arises, hold alt-printscreen and perform
the command "R E I S U B". This will restart the system without having to perform a hard boot. A work around
for the memory issue is to boot the Raspberry Pi into the command line interface (CLI), which will reduce memory
consumption and allow for the python modules to be built for the system. To accomplish this, run the following sequence
of commands

1 sudo systemctl start multi-user.target
2 .<DownloadLocation>/depthai-api/build_py_module

This starts a command line interface on next boot; in order to switch back to graphical use sudo systemctl start
graphical.target. Once the script succeeds in building the python modules, the module

depthai.cpython-36m-aarch64-linux-gnu.so

will be in the depthai directory. When attempting to run the test.py script for the Luxonis, there was a conflict with
the openCV version. To list where the python packages are install, use the command python3 -m site. The openCV
package for this system was in /usr/lib/python3/dist-packages/ and needed to be copied over to the installation
directory of OpenVINO.

1 cp cv2.cpython-36m-aarch64-linux-gnu.so <OpenVINODirectory>/python/python3/cv2.ab3.so

This will overwrite the openCV package used by OpenVINO to the one installed by apt. Afterwards, the depthai package
needed relinking with the command

1 pip3 install --user -e depthai-python-extras/
2 pip3 install --user -e .

After running python3 test.py as a functional test, the system is capable of communicating with the Luxonis
camera.

3

https://01.org/openvinotoolkit
https://github.com/openvinotoolkit/openvino
https://docs.luxonis.com/api/#install


F. ROS Install
At this point, it is advisable to save the OS image in case anything goes wrong. Run win32 disk imager if using

windows, select the SD card, and select the filename to read, and select read. The process takes approximately 12
minutes - note this will be a large file (30Gb). To further target the Raspberry Pi as a capable machine in Mechatronics,
ROS will now be installed for Ubuntu Mate. In the installation of ROS, the system needed an additional package and a
source directory.

1 sudo apt-get install python-rosdep
2 mkdir <ROSDIR>/ src/

The tutorials from the ROS website are beneficial in setting up the catkin workspace and understanding the fundamentals
of the robotic operating system.

http://wiki.ros.org/ROS/Tutorials

III. Calibrate Camera
To user stereo depth measurements, the camera needs to be calibrated to account for its unique optic parameters.

Once determined, these parameters can be used to undo the distortions naturally present in the camera. More information
can be found by reading the openCV page for stereo calibration

https:
//docs.opencv.org/2.4/modules/calib3d/doc/camera_calibration_and_3d_reconstruction.html

To aid in the process, Luxonis provides a calibration utility to perform the operation. Note that currently the
checkerboard used to calibrate the camera is based on an 7x11 grid. It is possible to change the default values using a
stream editor such as sed with the following series of commands.

1 cd <INSTALLDIR>/depthai-python-extras/depthai_helpers/
2 cp calibration_utils.py calibration_utils_py.bak
3 sed -i ’/self.objp\|Chessboard/{
4 N
5 s/9/<WIDTH>/g
6 s/6/<HEIGHT>/g
7 }’ calibration_utils.py

to verify the correct lines were modified, run the command

1 diff -u calibration_utils.py.bak calibration_utils.py

Otherwise if using the default chessboard provided in the install of the depthai python package, the script requires
no adjustments. The process of calibration can be followed from the Luxonis documentation found here

https://docs.luxonis.com/tutorials/stereo_calibration/

The checkerboard can either be printed or displayed on a flat monitor for calibration. After taking the images, the result
is a custom configuration file placed in the directory depthai/resources/depthai.calib. This will be used for any
future depth measurements.

IV. Developing a Model
Before implementing a model on the Luxonis Camera, a custom model has to be built for the purpose of identifying

the targets correctly. To develop a pipeline for training and development, this report outlines the process of setting up
TensorFlow on an NVIDIA Jetson Nano and a reccommended method of using Google Colaboratory to develop the
neural network that will be run on the Movidius X chip. Although the NVIDIA Jetson Nano is a powerful embedded
system, the processing requirements to train a neural network proved to be at the limits of the machine. An alternative
approach is to use a Google Colab notebook to develop the model. The service is free and allows access to GPUs to
accelerate the training process. In particular, Luxonis has a notebook that was used for training which was helpful in
getting started

https://docs.luxonis.com/tutorials/object_det_mnssv2_training/

4

http://wiki.ros.org/ROS/Tutorials
https://docs.opencv.org/2.4/modules/calib3d/doc/camera_calibration_and_3d_reconstruction.html
https://docs.opencv.org/2.4/modules/calib3d/doc/camera_calibration_and_3d_reconstruction.html
https://docs.luxonis.com/tutorials/stereo_calibration/
https://docs.luxonis.com/tutorials/object_det_mnssv2_training/


A. Jetson Nano Setup (optional)
If setting up a Jetson Nano from scratch with all the tools needed for machine learning, this guide

https://www.pyimagesearch.com/2020/03/25/how-to-configure-your-nvidia-jetson-nano-for-
computer-vision-and-deep-learning/

is helpful in getting everything operating. Another resource if not building from source is a link to getting started with
the Jetson Nano, and the dependencies needed to install TensorFlow can be found from NVIDIA’s website below:

https://docs.nvidia.com/deeplearning/frameworks/install-tf-jetson-platform/index.html

In the pip install, the package scipy failed and instead was replaced with the apt package python3-scipy. The tutorials
for installing additional dependencies can be found in the tensorflow object detection api tutorial:

https://tensorflow-object-detection-api-
tutorial.readthedocs.io/en/latest/install.html#cudnn-install

https://tensorflow-object-detection-api-tutorial.readthedocs.io/en/latest/training.html

The installation to the protocol buffers library which is necessary for optimizing tensorflow on the Jetson Nano can
be found here:

https://github.com/protocolbuffers/protobuf/blob/master/src/README.md

As noted in the tensorflow documentation, it is optional to install cocotools if using it with the coco platform.

B. Image Collection
A python script can be used to collect images from the Luxonis camera using a hotkey and saved to a local directory.

A good number for training and testing is 200 images to start, with a split of 80% to 20% respectively. I adjusted the test
script from Luxonis to capture images using spacebar, which can be found on Github

https://github.com/RileyKenyon/Mechatronics

It is best practice that the images should very closely reflect the environment which the model will be implemented in.
For the purposes of this document, the images were taken on a desk because the model is a proof of concept, but if it is
needed in a test course or in other lighting conditions the training images should reflect that environment.

C. Image Annotation
The most time consuming portion of creating a object detection model is the annotation process. In order to annotate

the images, the software package labelImg is used to create bounding boxes around the object of interest and save the
metadata to an .xml file. The link to the labelImg annotation software can be downloaded from the source repository

https://github.com/tzutalin/labelImg

Although for this, the training will not be performed on the Jetson Nano, the setup and annotation process is the same as
the link below.

https://tensorflow-object-detection-api-tutorial.readthedocs.io/en/v1.9.1/install.html

Using the separation script to make two data sets, one for training and one for testing was useful from the link, rather
than manually performing the process. If following the tutorial from pyimagesearch.com, in order to get labelImg
working it was necessary to create a virtual environment with site packages using the command:

1 mkvirtualenv labelImg --system-site-packages

where labelImg was the name of the virtual environment. After the images are annotated and separated, upload the files
to Google Drive in order to mount to a Google Colab notebook. It is advisable to create a new Google Drive under
another email address in case an erroneous call is made such as rm -r which will remove everything in a given directory.

5

https://www.pyimagesearch.com/2020/03/25/how-to-configure-your-nvidia-jetson-nano-for-computer-vision-and-deep-learning/
https://www.pyimagesearch.com/2020/03/25/how-to-configure-your-nvidia-jetson-nano-for-computer-vision-and-deep-learning/
https://docs.nvidia.com/deeplearning/frameworks/install-tf-jetson-platform/index.html
https://tensorflow-object-detection-api-tutorial.readthedocs.io/en/latest/install.html#cudnn-install
https://tensorflow-object-detection-api-tutorial.readthedocs.io/en/latest/install.html#cudnn-install
https://tensorflow-object-detection-api-tutorial.readthedocs.io/en/latest/training.html
https://github.com/protocolbuffers/protobuf/blob/master/src/README.md
https://github.com/RileyKenyon/Mechatronics
https://github.com/tzutalin/labelImg
https://tensorflow-object-detection-api-tutorial.readthedocs.io/en/v1.9.1/install.html
pyimagesearch.com


D. Training the Model
The training can be accomplished on Google Colab thorough a notebook from the Luxonis website. Currently

present at the link

https://drive.google.com/open?id=1p1KEb37RS3h5HvjxSzcByeCmWdhdYBOD

The pipeline for training requires several conversions to work. At this point the files of the object being detected are
image files *.jpg and data files *.xml. To create tfrecord files, the inputs are converted from *.xml to *.csv. The
outputs are converted to a tfrecord file and label map file (*.pbtxt) using the images and *.csv files. This process is
repeated for the training and test data. Training is accomplished by using a pre-trained model, in this case the Mobilenet
SSD v2 Model and incorporating the new data for the custom object. This process takes a while, but after the loss
of the model has settled to below 2, model has been trained. The output is an inference graph which is exported as
frozen_inference_graph.pb.

E. Converting and Implementing the Model
The output of the Tensorflow model is a inference graph *.pb file. Using this file, the information can be converted

to a .bin (weights) and .xml (graph) using the model optimizer offered by the OpenVino toolkit. This optimizer can be
found by running the command

1 find <OPENVINO_DIR> -iname mo.py
2 find <OPENVINO_DIR> -iname myriad_compile

The python file is the model optimizer which performs the conversion. The second function, myriad_compile is used to
convert the *.xml file into a .blob that is offloaded to the Myriad X chip. In addition to this file, the Myriad X chip
requires a *.json file to inform the chip what outputs are expected from the model. In the case of the object detection
model, the outputs are the top left corner position of the bounding box, as well as the width and height of the box. If
using a pre-trained model such as anything in the OpenVino model zoo, the model outputs can be found

https://docs.openvinotoolkit.org/latest/usergroup3.html

The conversion for the test new model is accomplished via the Google Colab script provided by Luxonis as well,
the ssd_v2_support.json file is adjusted for the new model. The myriad_compile command is used to perform the
last conversion to a *.blob that can be used as a configuration file for the Luxonis. The command can be found at the
Luxonis Github

https://github.com/luxonis/depthai#conversion-of-existing-trained-models-into-intel-
movidius-binary-format

At the time of writing, OpenVino 2020.1.023 was used for the model conversion and compilation. For the custom model,
the compilation option -ip U8 did not yield the correct inference. In place, the option -ip FP16 was used. As a result
the image data did not convert correctly, but the metadata and bounding box were placed correctly, seen in figure 2.

V. Results
The model was able to be trained to identify the target in tensorflow. a sample test image is shown in figure 1. The

bounding box is drawn around the target with a probability of 79%. Upon converting the model to a blob, the preview
image has become distorted but the metadata remains informative. Similar to a PIXY camera, the output of the Luxonis
would return the position of the bounding box which could be used for targeting or locating an object.

6

https://drive.google.com/open?id=1p1KEb37RS3h5HvjxSzcByeCmWdhdYBOD
https://docs.openvinotoolkit.org/latest/usergroup3.html
https://github.com/luxonis/depthai#conversion-of-existing-trained-models-into-intel-movidius-binary-format
https://github.com/luxonis/depthai#conversion-of-existing-trained-models-into-intel-movidius-binary-format


Fig. 1 The target was identified with a probability of 79%, and drew a bounding box accordingly.

7



Fig. 2 The outcome of the model being converted to a blob for the Luxonis depthai camera. The background is indistin-
guishable, however the bounding box of the object was placed in the correct orientation and followed the target. The label is
also referring to a different entry of the Mobilenet SSD v2 labels because the entry of the target was not introduced.

8



VI. Conclusion
Luxonis is working on a product that is rapidly being developed and is incredible for edge computing. Along

with the rapid development, the code outlined here will likely need adjusting due to the pace at which the software is
changing. In the future, the python module should be offered through a python package manager such as pip, and the
main scripts should stabilize. However, at the time of this writing, the interfaces are changing daily. The uses for the
camera are numerous and the functionality outlined here has barely scratched the surface. In the future, the stereo depth
measurements could be utilized in ROS to perform simultaneous localization and mapping (SLAM) to navigate, as well
as a more exhaustive object detection model which could be offloaded to the camera for inference. The hardware allows
for complex operations without using the CPU of the embedded system. In the case of the Raspberry Pi, this frees up
the resources to perform other tasks such as running ROS.

VII. References
1) https://www.digitalocean.com/community/tutorials/how-to-use-systemctl-to-manage-systemd-
services-and-units

2) https://github.com/luxonis/depthai-python-extras
3) https://download.01.org/opencv/2020/openvinotoolkit/2020.1/
4) https://www.cyberciti.biz/faq/save-file-in-vi-vim-linux-apple-macos-unix-bsd/
5) https://www.pyimagesearch.com/2019/04/08/openvino-opencv-and-movidius-ncs-on-the-raspberry-
pi/

6) https://www.raspberrypi.org/forums/viewtopic.php?t=176612
7) https://superuser.com/questions/1106174/boot-ubuntu-16-04-into-command-line-do-not-start-
gui

8) https://wiki.ubuntu.com/Win32DiskImager
9) https://www.reddit.com/r/ROS/comments/e9e45p/ros_in_ubuntu_mate/
10) https://linuxize.com/post/how-to-add-apt-repository-in-ubuntu/
11) http://texdoc.net/texmf-dist/doc/latex/listings/listings.pdf
12) https://www.overleaf.com/articles/git-and-overleaf-integration/qmdncpnqwfxx
13) http://www.ee.surrey.ac.uk/Teaching/Unix/
14) https://www.linuxuprising.com/2018/07/mounting-google-drive-on-xfce-or-mate.html
15) https://github.com/NVIDIA/jetson-gpio
16) https://github.com/sparkfun/3D_Models

VIII. Acknowledgments
I would like to acknowledge the help of the course instructors including the professor, Professor Derek Reamon.

Furthermore, I would like thank the University of Colorado Boulder school of Engineering for providing phenomenal
facilities to further my education.

9

https://www.digitalocean.com/community/tutorials/how-to-use-systemctl-to-manage-systemd-services-and-units
https://www.digitalocean.com/community/tutorials/how-to-use-systemctl-to-manage-systemd-services-and-units
https://github.com/luxonis/depthai-python-extras
https://download.01.org/opencv/2020/openvinotoolkit/2020.1/
https://www.cyberciti.biz/faq/save-file-in-vi-vim-linux-apple-macos-unix-bsd/
https://www.pyimagesearch.com/2019/04/08/openvino-opencv-and-movidius-ncs-on-the-raspberry-pi/
https://www.pyimagesearch.com/2019/04/08/openvino-opencv-and-movidius-ncs-on-the-raspberry-pi/
https://www.raspberrypi.org/forums/viewtopic.php?t=176612
https://superuser.com/questions/1106174/boot-ubuntu-16-04-into-command-line-do-not-start-gui
https://superuser.com/questions/1106174/boot-ubuntu-16-04-into-command-line-do-not-start-gui
https://wiki.ubuntu.com/Win32DiskImager
https://www.reddit.com/r/ROS/comments/e9e45p/ros_in_ubuntu_mate/
https://linuxize.com/post/how-to-add-apt-repository-in-ubuntu/
http://texdoc.net/texmf-dist/doc/latex/listings/listings.pdf
https://www.overleaf.com/articles/git-and-overleaf-integration/qmdncpnqwfxx
http://www.ee.surrey.ac.uk/Teaching/Unix/
https://www.linuxuprising.com/2018/07/mounting-google-drive-on-xfce-or-mate.html
https://github.com/NVIDIA/jetson-gpio
https://github.com/sparkfun/3D_Models

	Introduction
	Experimental Setup
	Operating System
	Flashing Operating System
	Preliminary Package Install
	OpenVino Install
	Depthai Install
	Ubuntu Mate Installation

	ROS Install

	Calibrate Camera
	Developing a Model
	Jetson Nano Setup (optional)
	Image Collection
	Image Annotation
	Training the Model
	Converting and Implementing the Model

	Results
	Conclusion
	References
	Acknowledgments

