
Robust Inner Loop Control of a 6-DOF Rotary
Wing Unmanned Aircraft System

Riley Kenyon

May 6th, 2020

Abstract

This report describes the process of synthesizing a series of inner
loop controllers using H∞ and µ synthesis techniques for an 11 state
rotary wing micro air vehicle with analysis of their robustness prop-
erties. The objective is to ensure robust command tracking of the roll
and pitch attitude and disturbance rejection of the attitudes in the
presence of a structured multiplicative input uncertainty.

1 Topic Discussion

1.1 Introduction

The state vector of the system is given by x = (u, v, p, q, φ, θ, as, bs, w, r, rfb)
T ,

where u, v, w are the vehicle translational velocities about the longitudinal,
lateral, and vertical body axis, p, q, r are the vehicle roll, pitch, and yaw
rate respectively, θ and φ are the roll and pitch attitude, as, bs are the rotor
dynamics states (orientation of the rotor relative to the body), and rfb is
the washed out yaw rate, a filtering state associated with the onboard yaw
rate feedback. The control input vector is δlong, δlat, δped, corresponds to the
longitudinal cyclic, the lateral cyclic, and the tail rotor inputs. The outputs
available for feedback are the pitch and roll attitude θ and φ, and the washed
out raw rate rfb. The objective of the project is to ensure robust command
tracking of θ and φ and output disturbance rejection of θ and φ in the presence
of a structured multiplicative input uncertainty.

1

1.2 Generalized Plant for Reference Tracking

The system can be represented in the traditional block diagram with the
multiplicative input uncertainty model. The two cases of interest are for
output disturbance rejection for the roll and pitch attitude, and reference
tracking for the roll and pitch attitude. For reference tracking, the block
diagram is shown in figure 1.

K

Wp

Wi ∆

G
u

u∆

y∆

w v

-

z

Figure 1: Block diagram for reference tracking with an input multiplicative
uncertainty model.

The feedback block diagram representation shown is converted to a gen-
eralized plant in the form of figure 2. Writing out the system of equations
for the reference tracking problem in terms of the input (y∆, w, u)T results
in a generalized plant from equation 1.

 u∆

z
v

 =

 0 0 Wi

−WpG Wp −WpG
−G I −G

 y∆

w
u

 (1)

The generalized plant can be closed in a lower linear fractional trans-
formation (LFT) to obtain the matrix N which is useful for determining
performance and stability tests due to the N -∆ form. The w to z transfer
function is given by the N(2, 2) block which yields information about nominal
performance. Information about robust stability is given from the N(1, 1)
entry, which is a transfer function that relates y∆ to u∆ also known as the
matrix M in M -∆ form. Using the equation to close a LFT, the general-
ized plant P and controller K can be combined into the matrix N with the

2

P

∆

K

w z

u∆y∆

vu

Figure 2: The generalized plant representation of a system with uncertainty.

expression
N = P11 + P12K(I − P22K)−1P21 (2)

which results in the matrix N , equal to(
u∆

z

)
=

(
−WiTi WiKSo

−WpSoG −WpSo

)(
y∆

w

)
(3)

From this point, the tests for nominal performance (NP) and robust sta-
bility (RS) are determined by the infinity norm || · ||∞ of the entry. The test
for nominal performance is then

||WpSo||∞ < 1 (4)

where in this case WP is a 3x3 diagonal matrix of performance weighting
functions. These entries are multiplied with the three states for feedback
(θ, φ, rfb)

T , although the weighting functions of interest are those correspond-
ing to the pitch and roll attitude.

1.3 Generalized Plant for Disturbance Rejection

The standard block diagram can also be formed for a disturbance rejection
model, where the output z is a function of the output state vector y and w
is the output disturbance. The purpose of looking at the system from this
perspective it to design a weighting function Wp and ultimately a controller
K through H∞ synthesis that reduces the effect of w on z.

3

K

Wi ∆

G

w

Wp
u

u∆

y∆

v y z

-

Figure 3: Block diagram for disturbance rejection with an input multiplica-
tive uncertainty model.

For this block diagram, the converted generalized plant results in a matrix
of

 u∆

z
v

 =

 0 0 Wi

WpG Wp −WpG
−G −I −G

 y∆

w
u

 (5)

following the same procedure as the reference tracking case, the general-
ized plant P can be closed with the lower LFT to obtain the matrix N .(

u∆

z

)
=

(
−WiTi −WiKSo

WpSoG WpSo

)(
y∆

w

)
(6)

Looking at the entries of the matrix N for the reference tracking case,
shown in equation 3, the difference is only a couple of signs on the entries of
the matrix. As a result of using the infinity norm, the nominal performance
and robust stability test for both the reference tracking and disturbance
rejection case is identical.

2 Synthesizing an H∞ Controller

An H∞ controller can be made for the generalized plant P by solving two
algebraic Riccati equations and solving for an H∞ cost. This process is
done using a Matlab routine hinfsyn and the sysic, or system interconnect

4

Figure 4: The loop and plant transfer functions using an H∞ controller. The
gain for the loop transfer function is increased in the low frequency range to
aid in reducing reference error and increasing disturbance rejection.

command to construct the generalized plant P for larger systems. The initial
performance weighting transfer function of the form

wp(s) =
s
M

+ wbs

s+ wbA)
(7)

is selected, where M is chosen to be 1.5, A to be 0.08, and a bandwidth wb

of 8. The matrix Wp is a block diagonal matrix of entries wp used in the
robustness analysis. For the values listed above, the plant and loop transfer
function singular value plots are shown in figure 4. The gain is increased
in the low end of frequencies to shape the system for desired reference an
disturbance performance.

The closed loop transfer functions can be used to determine if the system

5

Figure 5: The output sensitivity transfer function used in the nominal per-
formance test of the system is shown to lie beneath the inverse of the per-
formance weighting function representing the system meets nominal perfor-
mance with the H∞ controller.

meets nominal performance, the test from equation 4 can be visualized if the
singular value plot of the output sensitivity transfer function So is less than
the inverse of the performance weighting function. The plot of the singular
values and the weighting function are shown in figure 5. To visualize the
performance of the system, the closed loop step responses for the pitch and
roll attitude, as well as the disturbance rejection from an output disturbance
to these states at the output of the loop is shown in figure 6.

Under the current controller and performance weighting function, the
bandwidth of the system is approximately 18 rad/s with a tracking error of
around 8 % for signals under 1 rad/s estimated from the open loop crossover
frequency.

6

Figure 6: The step response of the closed loop system under H∞ control
and the disturbance rejection to an output disturbance for the roll and pitch
attitudes.

7

3 Performance with Structured Uncertainty

Adding in a structured uncertainty allows for robust stability and perfor-
mance analysis for the uncertainty model, given that the structure is assumed
to be diagonal complex entries. In the case of the aircraft system, the un-
certainty model is an input multiplicative uncertainty model with a relative
weighting given by the transfer function

wi(s) =
s+ 0.2

0.5s+ 1
(8)

where the 3x3 diagonal matrix Wi contains the entries of wi along the diag-
onal. Adding in the uncertainty to the model requires an additional step to
determine robustness. The most conservative approach is assuming no struc-
ture (full complex) to the uncertainty and using the infinity norm. However,
due to the structure, µ synthesis can be used to obtain a robustness test for
performance. The process of µ synthesis requires the system to put into an
M -∆ form, but still containing the information form N . This is accomplished
by adding in an additional structured ∆ block to relate z to w. By doing so,
the block diagram has the form of figure 7 with the robust performance test
given by

||µ∆̂(N)||∞ < 1 (9)

where ∆̂ is the block diagonal matrix from figure 7. In Matlab this
is accomplished by setting the block structure of the the uncertainty and
using the command mussv to obtain the lower and upper bounds of the
structured singular value. Using this method on the system results in a
new H∞ controller accounting for the uncertainty in the model. The robust
stability singular value plot for the original controller can be seen in figure 8.
Notice the system can satisfy nominal performance but not robust stability.
With the current controller, the margin on robust stability is 0.61, meaning
that the system can only withstand slightly over half of the expected max
perturbations.

The robust performance singular value plot for the original controller can
be seen in figure 9, where the system also does not satisfy robust performance.
For robust performance, the margin is 0.084 suggesting the current controller
settings are not robust to performance and require significant adjustment. To
develop a better controller and account for some of the uncertainty model,
the process is repeated with a different performance weighting function Wp.

8

N

∆
∆P

Figure 7: The M -∆ form of the structured singular value with N as M and
a block diagonal matrix for ∆.

Figure 8: Robust stability plot of the original weighting function and H∞
controller. The peak of the µ plot is greater than 1, representing robust
stability is not met. The robust stability margin in this case is 0.61.

9

Figure 9: Robust performance plot of the original weighting function and
H∞ controller. In this case, the peak of the robust performance mu plot is
much greater than 1 meaning the system does not satisfy robust performance.
The robust performance margin with this controller is 0.084, such that the
system can withstand approximately 1/12 of the max perturbation from the
uncertainty model.

10

Figure 10: Robust stability plot of the adjusted weighting function and H∞
controller, the robust stability has been decreased to a robust stability margin
of 0.53 from a margin of 0.61.

The values of the performance weighting function were changed such that
A = 0.25, M = 1.2, and the bandwidth wb = 18. Using the new performance
weightings, the Matlab command hinfysn was used to develop a new con-
troller and the results of the robust stability and performance can be seen in
figures 10 and 11 respectively.

with the new controller, the robust stability decreased slightly but robust
performance margins were increased. The performance of the new controller
with respect to reference tracking and disturbance rejection is shown in fig-
ure 12. Although the reference tracking is more oscillatory and bandwidth
have decreased, the system is more robustly stable and has a much greater
margin. Even so, the system can withstand approximately 1/4 of the max
perturbation from the uncertainty model.

11

Figure 11: Robust performance plot of the adjusted weighting function and
H∞ controller, the robust performance margin increased almost three times
from 0.084 to 0.227.

12

Figure 12: The step response of the closed loop system under the new H∞
control law and the disturbance rejection to an output disturbance for the
roll and pitch attitudes.

13

4 D-K iteration

To further improve the controller, the design loop of creating an H∞ con-
troller with robust performance can be cast as an iterative problem by aug-
menting the generalized plant with a matrix D and D−1. The scaling factors
allow for a controller to be recursively solved. The system is fit to scaling
factors and the factors are used in the next iteration of the H∞ controller.
For the aircraft, the D-K iteration is done manually by setting a number
of iterations, in this case 6, and recursively solved to lower the H∞ cost
and produce better margins for robust stability and performance. The final
D-K iteration produces results seen in the open loop with figure 13, closed
loop with 14, and with the reference tracking and disturbance rejection plots
in figure 15. The difference in the robust performance and robust stability
singular value plots is shown in figure 17 and 16.

5 Conclusion

Ultimately, the final controller improved the robust performance and robust
stability of the system to a multiplicative input uncertainty model at the ex-
pense of bandwidth and the transient response. The robust stability margin
with the final controller was 0.4685 which is slightly reduced from the margin
of 0.53 from the second controller based off the revised weighting function.
The robust performance margin was 0.24 for the final controller. Although
not satisfying robust performance, the improvement from the starting margin
of 0.084 is three times more robust. Adding in additional states such as roll
and pitch rates could improve the margins at the expense of more internal
states for the H∞ controller.

14

Figure 13: The loop and plant transfer functions using an H∞ controller. The
gain for the loop transfer function is increased in the low frequency range to
aid in reducing reference error and increasing disturbance rejection, and is
lowered at high frequencies for robustness properties and noise rejection.

15

Figure 14: The output sensitivity transfer function used in the nominal per-
formance test of the system. The system does not lie beneath the inverse of
the performance weighting function and does not meet nominal performance
for all frequencies with the H∞ controller.

16

Figure 15: The step response of the closed loop system under the new H∞
control law after D-K iteration and the disturbance rejection to an output
disturbance for the roll and pitch attitudes.

17

Figure 16: Robust stability plot after the final value from the D-K iteration
for the H∞ controller.

18

Figure 17: Robust performance plot for each iteration of the D-K iteration
for the H∞ controller, ultimately increasing the robust performance margin.

19

A Code

A.1 Matlab Analysis

%% Robust Inner Loop Control of a 6-DOF Rotary Wing Unmanned Aircraft System

% Riley Kenyon

% 05/07/2020

clear all; close all; clc;

% Load dynamics

run Final_Project_Heli_dynamics.m

% Determine weighting functions

s = tf(’s’);

A = 0.08; M = 1.5; wb = 8;

% A = 3; M = 5; wb = 10;

wp = (s/M+wb)/(s+wb*A); Wp = blkdiag(wp,wp,wp);

% Frequency range requirements

w_rng = {10^-3,10^3};

w_r = wb/10; % Track up low frequencies

w_d = wb*10; % Reject disturbances in high frequencies

% Setup P w/o uncertainty

systemnames = ’G Wp’; % performance weights

inputvar = ’[w(3); u(3)]’; % (w, u)’

outputvar = ’[Wp; w-G]’; % (z, v)’, assumes output signal of block

input_to_G = ’[u]’; % Inputs from block diagram

input_to_Wp = ’[w-G]’;

sysoutname = ’P’;

sysic;

P = minreal(ss(P));

% Define size of u and v for controller

n_meas = 3;

n_ctrl = 3;

% Synthesize H_inf controller

20

[K,CL,gamma(1),info] = hinfsyn(P,n_meas,n_ctrl,’method’,’ric’,’Tolgam’,1e-3,’DISPLAY’,’on’);

% Construct CL transfer functions

I = eye(3);

omega = logspace(-3,3);

So = minreal(inv(I+G*K));

To = minreal(G*K*inv(I+G*K));

Si = minreal(inv(I+K*G));

Ti = minreal(K*G*inv(I+K*G));

% Open-loop nominal performance

L = G*K;

figure(1); clf;

sigma(G(1:2,1:2),’b’,L(1:2,1:2),’g’,w_rng);

legend(’G’,’L’)

% R = rectangle(’position’,[w_rng{1},0,w_r-w_rng{1},db(1/A)]);

% R.LineStyle = ’--’;

% R.LineWidth = 1.5;

% R.EdgeColor = ’r’;

% D = rectangle(’position’,[w_d,db(1/M),w_rng{2} - w_d, -db(1/M)]);

% D.LineStyle = ’--’;

% D.LineWidth = 1.5;

% D.EdgeColor = ’r’;

%

% Closed-loop nominal performance

figure(2), clf;

sigma(inv(Wp(1,1)),’r--’,So(1:2,1:2),’g’,{10^-3,10^3});

legend(’1/{W_p}’,’So (H_{\infty})’); grid on;

% Step responses

figure(3), clf;

subplot(2,2,1)

step(To(1,1));

ylabel(’θ’,’interpreter’,’latex’)

subplot(2,2,2)

step(To(2,2));

ylabel(’ϕ’,’interpreter’,’latex’)

21

% Disturbance rejection

subplot(2,2,3)

step(So(1,1));

ylabel(’$d_o \rightarrow \theta$’,’interpreter’,’latex’)

subplot(2,2,4)

step(So(2,2));

ylabel(’$d_o \rightarrow \phi$’,’interpreter’,’latex’)

%% With modeled uncertainty

% Same performance weighting

A = 0.08; M = 1.5; wb = 8;

wp = (s/M+wb)/(s+wb*A); Wp = blkdiag(wp,wp,wp);

% Define structure

wi = (s+0.2)/(0.5*s+1); Wi = eye(3)*wi;

% Setup P with delta

systemnames = ’G Wp Wi’; % added uncertainty weighting function (Wi)

inputvar = ’[ydel(3); w(3); u(3)]’; % (y_delta, w, u)’

outputvar = ’[Wi; Wp; w-G]’; % (u_delta, z, v)’, assumes output signal of block

input_to_G = ’[u + ydel]’; % Inputs from block diagram

input_to_Wp = ’[G]’;

input_to_Wi = ’[u]’;

sysoutname = ’P’;

sysic;

P = minreal(ss(P));

% Mu plot parameters

LinMagopt = bodeoptions;

LinMagopt.PhaseVisible = ’off’;

LinMagopt.XLim = [1e-3 1e2];

LinMagopt.MagUnits = ’abs’;

omega = logspace(-3,3);

% Define N

clear N;

22

%N = [-Wi*Ti Wi*K*So; -Wp*So*G -Wp*So];

N = lft(P,K);

% Robust stability

figure(5); clf;

wiTi_frd = frd(N(1:3,1:3),omega);

clear BlkStruct; BlkStruct = [1 1; 1 1; 1 1];

[mu_wiTi] = mussv(wiTi_frd,BlkStruct);

bodeplot(mu_wiTi(1,1),’bo’,mu_wiTi(1,2),’r-’,LinMagopt)

legend(’Upper Bound’,’Lower Bound’)

xlabel(’Frequency (rad/sec)’); grid on;

ylabel(’Mu upper/lower bounds (abs)’);

title(’Robust Stability (RS) Mu Plot’);

% Robust performance

figure(6); clf;

N_frd = frd(N,omega);

clear BlkStruct; BlkStruct = [1 1; 1 1; 1 1; 3 3];

[mu_N] = mussv(N_frd,BlkStruct);

bodeplot(mu_N(1,1),’bo’,mu_N(1,2),’r-’,LinMagopt)

legend(’Upper Bound’,’Lower Bound’)

xlabel(’Frequency (rad/sec)’); grid on;

ylabel(’Mu upper/lower bounds (abs)’);

title(’Robust Performance (RP) Mu Plot’);

%% Iterate on design weighting functions

% Neither robust stability or performance is met with current controller

% A = 3; M = 5; wb = 10;

% A = 0.08; M = 1.5; wb = 8;

% A = 1.8; M = 2; wb = 10;

% A = 0.5; M = 1.8; wb = 1;

A = 0.25; M = 1.2; wb = 18;

clear wp Wp

wp = (s/M+wb)/(s+wb*A); Wp = blkdiag(wp,wp,wp); % cannot have third weight zero

sysic;

P = minreal(ss(P));

23

% Synthesize H_inf controller

clear K

[K,CL,gamma(1),info] = hinfsyn(P,n_meas,n_ctrl,’method’,’ric’,’Tolgam’,1e-3,’DISPLAY’,’on’);

clear So To Si Ti

So = minreal(inv(I+G*K));

To = minreal(G*K*inv(I+G*K));

Si = minreal(inv(I+K*G));

Ti = minreal(K*G*inv(I+K*G));

% Define N

clear N;

% N = [-Wi*Ti Wi*K*So; -Wp*So*G -Wp*So];

N = lft(P,K);

% Robust stability

figure(7); clf;

clear wiTi_frd, wiTi_frd = frd(N(1:3,1:3),omega);

clear BlkStruct; BlkStruct = [1 1; 1 1; 1 1];

[mu_wiTi] = mussv(wiTi_frd,BlkStruct);

bodeplot(mu_wiTi(1,1),’bo’,mu_wiTi(1,2),’r-’,LinMagopt)

xlabel(’Frequency (rad/sec)’); grid on;

ylabel(’Mu upper/lower bounds (abs)’);

title(’Robust Stability (RS) Mu Plot’);

% Robust performance

figure(8); clf;

N_frd = frd(N,omega);

clear BlkStruct; BlkStruct = [1 1; 1 1; 1 1; 3 3];

[mu_N] = mussv(N_frd,BlkStruct);

bodeplot(mu_N(1,1),’bo’,mu_N(1,2),’r-’,LinMagopt)

xlabel(’Frequency (rad/sec)’); grid on;

ylabel(’Mu upper/lower bounds (abs)’);

title(’Robust Performance (RP) Mu Plot’);

% Step Responses

figure(9), clf;

subplot(2,2,1)

step(To(1,1));

24

ylabel(’θ’,’interpreter’,’latex’)

subplot(2,2,2)

step(To(2,2));

ylabel(’ϕ’,’interpreter’,’latex’)

% Disturbance rejection

subplot(2,2,3)

step(So(1,1));

ylabel(’$d_o \rightarrow \theta$’,’interpreter’,’latex’)

subplot(2,2,4)

step(So(2,2));

ylabel(’$d_o \rightarrow \phi$’,’interpreter’,’latex’)

% The design is much slower but achieves robust stability and performance

%% Use D-K iteration to redesign controller to achieve improved RP

% D-K iteration (manual/automated)

d0 = 1;

D = append(d0,d0,d0,tf(I),tf(I)); % Define initial scalings

% Initial K-step: Compute initial H-infinity controller

[K,CL,gamma(1),info] = hinfsyn(D*P*inv(D),n_meas,n_ctrl,’method’,’ric’,’Tolgam’,1e-3,’DISPLAY’,’on’);

% Initial D-step: Compute robust performance level

Nf = frd(lft(P,K),omega);

[mu_Nf,mu_Info] = mussv(Nf,BlkStruct);

mu_RP(1) = norm(mu_Nf(1,1),inf,1e-6)

% Generate mu plot

figure(10); clf;

bodeplot(mu_Nf(1,1),LinMagopt)

hold on; grid on;

% D-K iteration loop

N = 5; % Number of iterations

for i = 2:N

25

% Fit resulting D-scales

[dsysl,dsysr] = mussvunwrap(mu_Info); % Extract scalings

dsysl = dsysl/dsysl(3,3); % Normalize

di = fitfrd(genphase(dsysl(1,1)),4); % Fit 4th order systems to scalings

Di = append(di,di,di,tf(I),tf(I)); % Generate new scaling matrix

% K-step

[Ki,CL,gamma(i),info] = hinfsyn(Di*P*inv(Di),n_meas,n_ctrl,’method’,’ric’,’Tolgam’,1e-3,’DISPLAY’,’on’);

% D-step

Nf = frd(lft(P,Ki),omega);

[mu_Nf,mu_Info] = mussv(Nf,BlkStruct);

mu_RP(i) = norm(mu_Nf(1,1),inf,1e-6)

% Add to plot

bodeplot(mu_Nf(1,1),LinMagopt); grid on;

if i == N,

Kfinal = Ki;

end;

end;

figure(10);

xlabel(’Frequency (rad/sec)’);

ylabel(’Mu upper/lower bounds (abs)’);

legend(’#1’,’#2’,’#3’,’#4’,’#5’)

title(’Manual D-K Iteration’);

figure(11); clf;

wiTi_frd = frd(Nf(1:3,1:3),omega);

clear BlkStruct; BlkStruct = [1 1; 1 1; 1 1];

[mu_wiTi] = mussv(wiTi_frd,BlkStruct);

bodeplot(mu_wiTi(1,1),’bo’,mu_wiTi(1,2),’r-’,LinMagopt)

legend(’Upper Bound’,’Lower Bound’)

xlabel(’Frequency (rad/sec)’); grid on;

ylabel(’Mu upper/lower bounds (abs)’);

title(’Robust Stability (RS) Mu Plot’);

% Performance plots for final controller

26

% Closed loop TFs

So = inv(I+G*Kfinal);

To = G*Kfinal*inv(I+G*Kfinal);

% Open loop singular values

figure(12); clf;

sigma(G,’b’,G*Kfinal,’r--’,{1e-4,1e5}); grid on;

legend(’\sigma(G)’,’\sigma(G*K)’);

title(’Open Loop Singular Values’)

% Closed loop singular values and Wp

figure(13); clf;

sigma(So,To,’g-’,inv(Wp(1,1)),’r--’,{1e-3,1e3}); grid on;

legend(’\sigma(S_o)’,’\sigma(T_o)’,’\sigma(W_p)’);

title(’Closed Loop Singular Values’)

% Closed loop step response and disturbance rejection

figure(14); clf;

subplot(2,2,1),step(To(1,1)); grid on; %step(G(1,1),’b’

ylabel(’θ’,’interpreter’,’latex’)

subplot(2,2,2), step(To(2,2)); grid on; %G(2,2),’b’,

ylabel(’ϕ’,’interpreter’,’latex’)

legend(’Closed Loop’);

subplot(2,2,3), step(So(1,1)); grid on;

ylabel(’$d_o \rightarrow \theta$’,’interpreter’,’latex’)

subplot(2,2,4), step(So(1,1)); grid on;

ylabel(’$d_o \rightarrow \phi$’,’interpreter’,’latex’)

27

